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CHAPTER 1

Introduction

Markov-chain Monte Carlo methods, like the well known Metropolis algorithm [1], and molecular
dynamics [2] play a central role in simulations in the field of statistical mechanics, which aims to
understand the relation between the macroscopic properties of systems and the microscopic properties
of its constituents. The studied systems may display fascinating collective phenomena and phase
transitions (examples range from ferromagnetism [3] to superconductivity [4]). A basic assumption
of statistical mechanics is that, in equilibrium, the system visits each of its microscopic states in a
stochastic way during its evolution. Therefore, complex systems can be described by enumerating
all possible microscopic states weighted by the probability to find the system in a particular one [5].
This corresponds analytically to the often impossible task of computing sums over the complete
configuration space (or solving high-dimensional integrals).
Markov-chain Monte Carlo methods allow to reproduce the statistical behavior of a system in

thermodynamic equilibrium numerically. It samples configurations of the system according to
the appropriate probability distribution. These samples are then used to compute thermodynamic
properties of the system. Within the computational context, equilibrium usually means that all
probability flows vanish. This is enforced by the detailed-balance condition of Markov chains [6].
However, this condition leads to time-reversible (diffusive) dynamics which often produce Markov
chains converging only slowly to equilibrium. Similarly, the generation of independent samples, once
equilibrium is reached, requires long chains [7].

In order to not be influenced by these effects, the event-chain Monte Carlo (ECMC) algorithm [8, 9]
constructs an irreversible continuous-time Markov chain. It violates detailed balance and only satisfies
the weaker global-balance condition. Although the configurations generated at large times sample
the desired equilibrium distribution, the asymptotic state has non-vanishing probability flows. In an
interacting particle system with periodic boundary conditions, for example, the particles might move
preferentially in certain directions even though the configurations visited in the Markov chain realize
the equilibrium distribution. Moreover, there are no rejected configurations during the evolution of
the Markov chain.

ECMC simulations often equilibrate faster than their reversible counterparts [10–14]. They solved
the puzzle about the precise nature of the melting phase transition of two-dimensional hard disks [15,
16], after decades of unsuccessful studies using other Monte Carlo approaches as well as molecular
dynamics simulations. The ECMC algorithm is conceived for systems of constituents described
by continuous variables. The constituents might take part in (soft and hard) distance-dependent
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Chapter 1 Introduction

many-body interactions [9, 17] and can furthermore be placed in an external potential [18, 19].
Besides hard disks, it was successfully applied to soft disks [20], spin models [10, 12, 21], problems
in quantum-field theory [22], and dense all-atom systems with long-range Coulomb interactions [7].
ECMC combines three concepts: First, the factorized Metropolis filter [9, 17], which replaces

the traditional Metropolis acceptance criterion by a consensus rule. It applies to models where the
probability distribution can be split into a product over sets of independent and separately treated
factors. Each of these factors only depends on a subset of all constituents of the system and a proposed
configuration must be accepted by all of them.
Second, the lifting framework [23, 24] where the physical configuration space is augmented with

auxiliary variables that resemble the velocity of Newtonian mechanics. Each active constituent with a
non-zero velocity moves infinitesimally and persistently until a move is vetoed by a single factor, i.e.,
the proposed configuration generated by the moves of the active constituents is rejected by this factor.
The velocity is then transferred to another constituent taking part in this factor. These lifting moves
replace the characteristic rejections of the original Metropolis algorithm.

Third, the event-driven implementation, which is reminiscent of event-driven molecular dynamics [2,
25, 26]. Instead of moving the active constituents in small steps and checking if all factors accept the
changed configuration, each factor determines an event time at which consensus is broken and a lifting
move takes place. The earliest event time then determines the updated configuration and the relevant
lifting move. With these ideas, ECMC implements the time evolution of a piecewise non-interacting
(and therefore deterministic) system [27, 28].

The described concepts have remarkable implications. ECMC does not evaluate the equilibrium
probability distribution or its ratios. Hence, for the Boltzmann distribution it never computes the
total potential or its changes. Instead, the simulation proceeds from one event to the next with O(1)
complexity using the cell-veto algorithm [7, 29], even for long-range potentials like the Coulomb
interaction.

Moreover, ECMC samples the Boltzmann (canonical) distribution in a non-physical time evolution
which is used to compute thermodynamic averages. In contrast, the time evolution of molecular
dynamics (given by Newton’s law) is energy-conserving (micro-canonical) and has a physical meaning.
(In order to yield the Boltzmann distribution, systems in molecular dynamics simulations are generally
coupled to a thermostat [30].) This allows to compute dynamic properties like time correlations or
coarsening but gives no additional freedom to accelerate the exploration of the configuration space
from an algorithmic point of view. Monte Carlo methods, in general, are only constrained by the
global-balance condition and well chosen Monte Carlo dynamics can speed up the sampling of the
equilibrium distribution: a freedom exploited by ECMC.
Another important implication is that ECMC neither discretizes space nor time. Event-driven

molecular dynamics, in contrast, rely on piecewise constant potentials. Interaction potentials, for
example in biophysical simulations, have therefore been coarsely discretized in order to fit into this
framework [31, 32]. Although time-driven molecular dynamics do not have this restriction, the
simulation has to proceed in discretized time steps instead [30].
In ECMC, most constituents are at rest (their lifting velocity is zero) but generally an arbitrary

fixed number of independent active constituents with identical velocity vectors can be chosen. Most
previous applications of ECMC, however, chose a single active constituent. In event-driven molecular
dynamics all constituents typically have non-zero velocities. It is remarkable that it was shown
nevertheless that ECMC with a single active constituent mixes and relaxes comparable to molecular
dynamics for the case of one-dimensional particles with local interactions [14].
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Most ECMC applications so far chose only a single active constituent because a parallel ECMC
algorithm, which treats several active constituents independently in multiple threads or processes, is
yet to be developed. So far, it was only implemented for short-ranged interactions by using a domain
decomposition into stripes [33] or cells [34]. In contrast, parallel event-driven molecular dynamics
algorithms have already been developed [35–37].
This thesis concerns the design of a general-purpose Python application, named JeLLyFysh (JF),

that implements ECMC for a wide range of all-atom systems. Here, the full quantum-mechanical
many-body system is projected onto the reduced classical degrees of freedom of the involved particles’
positions. The potential energy of a configuration is thus a function of these positions. Hence, JF
is conceived for systems ranging from particles interacting by central potentials to composite point
objects such as finite-size dipoles, water molecules, and eventually peptides and polymers.1 By this,
it might prove useful in domains that have traditionally been reserved to molecular dynamics (in
particular, the all-atom Coulomb problem in biophysics and electrochemistry).
The application’s architecture closely mirrors the mathematical formulation presented in [7,

Section II]. The first version JeLLyFysh-Version1.0 (JF-V1.0) includes homogeneous translation-
invariant N-body systems in a regularly shaped simulation box with periodic boundary conditions.
The interactions can possibly be long-ranged and optionally be treated by the cell-veto algorithm.
The architecture of the application is designed to remain easily expendable toward new interaction
potentials. It is furthermore suited to treat, for example, spin models and problems in quantum-field
theory. The application is intended to grow into a basis code that will foster the development of
irreversible Markov-chain algorithms, which have shown their strong potential in the form of the
ECMC algorithm.
I had the great pleasure to design the application in collaboration with Liang Qin (ENS Paris),

Michael F. Faulkner (University of Bristol), A. C. Maggs (ESPCI Paris) and Werner Krauth (ENS
Paris). The results have been published [39]. (The publication is also attached, see publication in
Appendix B.) The application is developed as an open-source project on GitHub and can be executed
by any Python implementation which supports Python version 3.5 or higher.2 It is made available
under the GNU GPLv3 license. Contributions to the application via pull requests are encouraged.
The remainder of this thesis is structured as follows: Chapter 2 gives a mathematical introduction

into ECMC. Chapter 3 describes the architecture of the application, which is based on the mediator
design pattern [40]. The following Chapter 4 discusses how the eponymous events of ECMC are
determined in the event handlers of JF. Afterwards, Chapter 5 presents the user interface realized
through configuration files and how system definitions (such as, for example, the simulation box) are
broadcast to the different elements of the application. In Chapter 6 a number of worked-out simulation
examples for systems of atoms, dipoles, and water molecules are discussed, before the thesis is finally
concluded in Chapter 7.

1 The name implies that the application treats simulations of 95.56% water and 4.44% other things, which is the chemical
composition of the Aurelia aurita jellyfish [38].

2 The URL of the repository is https://github.com/jellyfysh/JeLLyFysh.

3

https://github.com/jellyfysh/JeLLyFysh




CHAPTER 2

Event-Chain Monte Carlo Algorithm

This chapter introduces the mathematical formulation of ECMC (see [7, Section II]). It begins with a
short introduction to Monte Carlo methods (see Section 2.1). The difference between direct sampling
and Markov-chain sampling is emphasized and an algorithm from each category is presented (rejection
sampling and the Metropolis algorithm). The application of these algorithms to the hard-sphere model
in Section 2.2 showcases some of their limitations and motivates the development of ECMC. The
factorized Metropolis filter, the lifting framework, and the event-driven implementation are thoroughly
explained in the Sections 2.3–2.5, followed by a presentation of the cell-veto algorithm in Section 2.6.
Finally, Section 2.7 applies these concepts again to the hard-sphere model.

2.1 Introduction to Monte Carlo Methods

Monte Carlo methods can be used as a statistical approach to compute expected values of a quantityA,

〈A〉 =
∑
c∈Ω

π(c)A(c). (2.1)

Here, Ω is the discrete space of all possible configurations c, A(c) is the value of the quantityA in the
configuration c, and π is the normalized probability distribution of the configurations. Normalized
means that ∑

c∈Ω

π(c) = 1. (2.2)

Monte Carlo methods are used when the configuration space is too large to directly carry out the
summation in Eq. (2.1). (For the case of a continuous space of configurationsΩ, the sums in Eqs. (2.1)
and (2.2) are replaced by an integral over the complete space.)
In statistical mechanics, the probability of a configuration c is often given by the Boltzmann

distribution
πB(c) =

1
Z

e−βU(c), (2.3)

where U(c) is the total potential of the configuration and β is the thermodynamic beta. Z is the
canonical partition function and 〈A〉 is then usually referred to as the canonical ensemble average.
The probability of a configuration is usually not exactly known because of the denominator.

5



Chapter 2 Event-Chain Monte Carlo Algorithm

x
x

x

x

x

xx

x

Figure 2.1: A direct sampling simulation to determine the numerical value of the number π. The probability
distribution is given by π(c) = k > 0 for configurations c = (x, y) ∈ R2 located in the blue square and
π(c) = 0 otherwise. Similarly, A(c) = 1 only inside of the gray circle. The red crosses show eight random
independent samples from which two are located outside the circle (samples #4 and #7). Equation (2.4) yields
an approximation for the ratio of the areas of the circle and the square and therefore π ≈ 3.

2.1.1 Direct Sampling

The approximation of the expected value 〈A〉 via Monte Carlo methods is based on the generation of
NS samples of configurations according to their probability [41]. Obtaining the samples independently
from each other is commonly referred to as direct sampling. Suppose the generated configurations are
c1, . . . , cN ∈ Ω. The (finite) expectation value 〈A〉 can then be approximated by the sample average
ANS

,

〈A〉 ≈ ANS
B

1
NS

NS∑
i=1

A(ci). (2.4)

That is because according to the strong law of large numbers the sample average converges almost
surely to the expected value [42]. In mathematical terms,

Probability
(

lim
NS→∞

ANS
= 〈A〉

)
= 1. (2.5)

If the variance Var(A) = 〈A2
〉 − 〈A〉2 is finite, the central limit theorem furthermore ensures that the

distribution of sample averages in the limit NS →∞ approaches a Gaussian distribution with mean
〈A〉 and variance Var(A)/NS [6].
A well known example uses direct sampling to determine the numerical value of the number π.

Consider the two-dimensional continuous space of configurations c = (x, y) ∈ R2. The geometric
center of a square with side length 2 is located at the position (0,0). At the same position, the geometric
center of a circle with diameter 2 is located. Let π(c) = k > 0 for all configurations within the square
and A(c) = 1 for all configurations within the circle. Taking two uniformly distributed real random
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numbers between −1 and 1 generates independent random samples of configurations according to
π(c). In each of these samples, the configuration can be within the circle or not. For a large number of
samples the ratio of the number of samples within the circle and the total number of samples yields an
approximation for the ratio of the areas of the circle and the square. This can be used to approximate
the number π (see Fig. 2.1).
A general way to construct independent samples according to a probability distribution π is the

inverse transform sampling [43, 44]. First, assume that the possible configurations are described by
a single real number, c = x ∈ R.1 The cumulative distribution function F(x) is then defined as the
probability that c takes values less than or equal to x,

F(x) B
∫ x

−∞

dx ′ π(x ′). (2.6)

F is at least weakly monotonic and its inverse is defined for arguments 0 < v < 1 as

F−1
(v) B inf

{
x ′ : F(x ′) ≥ v

}
. (2.7)

If v is chosen as a uniformly distributed random number between 0 and 1, F−1
(v) is distributed

according to the probability distribution π(x). This can be extended in a straightforward manner to
the discrete configuration space, but the extension to multivariate distributions (that is, probability
distributions which depend on more than a single parameter) is quite cumbersome [44]. Assume
that there are d parameters. The analog of the inversion transfer sampling method (the conditional
distribution method) is only possible if the probability distribution can be written as

π(x1, . . . , xd) = π1(x1)π2(x2 |x1) . . . πd(xd |x1, . . . , xd−1). (2.8)

Here, πd(xd |x1, . . . , xd−1) denotes the conditional probability for xd given the other values x1, . . . , xd−1.
Furthermore, all of the conditional probability distributions must be invertible so that the inverse
transform sampling can be applied to each of them. For the Boltzmann distribution this method is not
suitable because, as mentioned, the canonical partition function and therefore the exact probability of
a configuration is generally not known. (Also, if the canonical partition function was known, there
would be hardly any need for a Monte Carlo simulation anyways.) However, the inverse transform
sampling is often used to generate non-uniformly distributed random numbers, for example following
an exponential distribution.
In order to directly sample the Boltzmann distribution, rejection sampling can be used [43, 44].

Consider, for example, classical particles in a box. The interactions between the particles and the
external potential yield the total potential U(c) ≥ 0 of a configuration. To generate samples according
to πB(c), first a configuration from a uniform distribution is sampled, i.e., each particle is placed at a
random position in the box. Then, this sample is accepted with the probability exp(−βU(c)) and only
the accepted samples are used to compute the canonical ensemble average. It is important to note
that the acceptance probability does not depend on the canonical partition function. The exact value
of the probability of a configuration is not relevant but only the relative probabilities. The rejection
sampling algorithm is not practical in most cases because the acceptance probabilities of the generated
configurations exp(−βU(c)) are often very small [1].
1 In this context, one usually calls the possible configurations the possible values of a continuous random variable. For the
sake of simplicity, the already introduced terms are kept.
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2.1.2 Markov-Chain Sampling

The well known Metropolis algorithm [1] creates samples of configurations according to a probability
distribution using a Markov chain [45]. A brief discussion of a Markov chain is given in the following
(see [46, Section 2.2.4], for a more formal discussion see [47]).

Consider a finite set of possible configurations c1, c2, c3, . . . (the discussion can be generalized to
a continuum of configurations). Define a stochastic process at discrete times labeled consecutively
t1, t2, t3, . . ., and denote by Xt the configuration of the system at time t. Similar to Eq. (2.8), the
conditional probability that Xtn

= cin is written as

π(Xtn
= cin |Xtn−1

= cin−1
,Xtn−2

= cin−2
, . . . ,Xt1

= ci1), (2.9)

given that at the preceding time Xtn−1
= cin−1

, etc. If the conditional probability is independent of all
configurations except the immediate predecessor, that is,

π(Xtn
= cin |Xtn−1

= cin−1
,Xtn−2

= cin−2
, . . . ,Xt1

= ci1) = π(Xtn
= cin |Xtn−1

= cin−1
), (2.10)

the stochastic process is called a Markov process and the sequence of configurations is called a Markov
chain. The given conditional probability can then be interpreted as a transition probability p(i → j)
to move from the configuration ci to the configuration cj ,

p(i → j) = π(Xtn
= cj |Xtn−1

= ci). (2.11)

The transition probabilities should obey

p(i → j) ≥ 0, and
∑
j

p(i → j) = 1. (2.12)

The total probability that at the time tn the system is in the configuration cj is

π(Xtn
= cj) =

∑
i

p(i → j) π(Xtn−1
= ci). (2.13)

The Metropolis algorithm generates a new configuration from a previous configuration and therefore
constructs a Markov chain. In order to converge toward the wanted probability distribution, the
transition probabilities must be chosen so that Eq. (2.13) is satisfied. Introducing the flow F and
omitting the time notation, this equation is written as

Fc B
∑
c′

Fc′→c B
∑
c′

p(c′→ c) π(c′) = π(c), (2.14)

which states that the total flow into a configuration c, given by the sum of the flows from all other
configurations c′ into c, must equal its probability. This condition is called the global-balance
condition. A special solution of Eq. (2.14) is given by the detailed-balance condition,

p(c→ c′) π(c) = p(c′→ c) π(c′). (2.15)

This can be easily shown by using the normalization property of the transition probabilities in
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2.1 Introduction to Monte Carlo Methods

Eq. (2.12). Detailed balance expresses that the flow from a configuration c′ into another configuration
c equals the inverse flow. A reversible Markov chain obeys the detailed-balance condition.
In addition to the global-balance condition, the Markov chain must also be ergodic. This ensures

that the time average over the configurations visited during the Markov chain equals the configuration
space average. A chain is ergodic if it is possible to eventually reach any configuration from any other
configuration with non-zero probability [48]. (For a detailed discussion when Markov chains fail to
be ergodic, see the same reference.) Although non-ergodic simulations are sometimes desired (for
example below a phase transition), one should always take care that the implemented simulation is
not unintentionally non-ergodic [46]. In order for a Markov chain to converge toward the desired
stationary equilibrium, it must also be aperiodic. A configuration has the period τ if any return to the
configuration occurs in multiples of τ time steps. The Markov chain is aperiodic if all configurations
have the period τ = 1 [48]. In this thesis, it is generally assumed that the generated Markov chains are
aperiodic and it is just argued that the presented algorithms yield in principle ergodic chains.

2.1.2.1 Metropolis Algorithm

The Metropolis algorithm uses a symmetric proposal distribution gMet
(c → c′) = gMet

(c′ → c) to
propose a new configuration. Afterwards, the new configuration is accepted with the probability

AMet
(c→ c′) = min

[
1,
π(c′)
π(c)

]
. (2.16)

The transition probabilities pMet
(c → c′) = gMet

(c → c′)AMet
(c → c′) satisfy the detailed-balance

condition in Eq. (2.15). This can be shown straightforwardly by considering the distinct cases
π(c) > π(c′), π(c) < π(c′) and π(c) = π(c′). (Non-symmetric proposal distributions are considered
in the Metropolis-Hastings algorithm [49].)

For the Boltzmann distribution in Eq. (2.3), the Metropolis algorithm accepts the new configuration
c′ with the probability min

[
1,exp(−β∆U)

]
, where ∆U = U(c′) −U(c). The acceptance rate can be

changed by adjusting the symmetric proposal distribution (see Section 2.2). In the original paper,
Metropolis considered N particles, each of them interacting via a pair potential. A new configuration
is proposed based on each particle in succession by embedding it into a square with the side length 2δ
and choosing a new position within this square. Since a particle is allowed to move to any point in the
square with a finite probability, a large enough number of moves will enable it to reach any point in
the complete simulation box. This is true for all particles and any configuration in the phase space can
eventually be reached. Hence, the method is ergodic for such systems [1].

There had been great progress in Markov-chain Monte Carlo methods since the development of the
Metropolis algorithm. Non-local cluster algorithms were used, among other systems, in classical spin
models [50, 51] and systems where the total potential is either infinite or zero (which is the case, for
example, for the hard-sphere model in Section 2.2) [52]. Extensions of the classical detailed-balance
condition led to faster converging Markov chains by introducing persistence between subsequent
moves. This solves the problem that detailed balance yields diffusive time-reversible Markov-chain
dynamics. Examples include the guided walk Metropolis algorithm [53], hybrid Monte Carlo [54],
and the overrelaxed Markov-chain Monte Carlo algorithm [55]. The lifting framework [23, 24] unifies
these concepts. Here, the physical configuration space Ω is augmented with auxiliary variables that
resemble the velocity of Newtonian mechanics. This framework is used in ECMC (see Section 2.4).
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Chapter 2 Event-Chain Monte Carlo Algorithm

2.1.3 Data Analysis

There is an essential difference between the direct sampling presented in Section 2.1.1 and the
Markov-chain sampling discussed in Section 2.1.2. Direct sampling yields independent uncorrelated
samples of the desired probability distribution whereas Markov-chain sampling yields correlated
samples. This section begins with the error analysis of direct sampling which is straightforward due
to the central limit theorem [46]. The sample average in Eq. (2.4) is an unbiased estimator of the
expectation value 〈A〉. In the following, an unbiased estimator for the variance of the distribution of
the sample averages,

Var(ANS
) = 〈A 2

NS
〉 − 〈ANS

〉
2, (2.17)

is constructed. Here, the expectation value is obtained by averaging over the ensemble of all possible
sets of samples of size NS . Inserting Eq. (2.4) into Eq. (2.17) yields

Var(ANS
) =

1
N2
S

NS∑
i=1

NS∑
j=1

γi, j =
1

N2
S

©«
NS∑
i=1

γi,i +

NS∑
i=1

NS∑
j=1, j,i

γi, j
ª®¬ , (2.18)

with the unnormalized autocorrelation function of the observable A

γi, j B 〈AiAj〉 − 〈Ai〉〈Aj〉. (2.19)

For uncorrelated samples, γi, j = 0 if i , j. Together with 〈Ai〉 = 〈A〉 and 〈A2
i 〉 − 〈Ai〉

2
= Var(A),

the variance of the distribution of sample averages becomes

Var(ANS
) =

Var(A)
NS

. (2.20)

This result agrees with the central limit theorem but the latter is more specific as it also fixes the
shape of the distribution of the sample averages. A biased estimator of Var(A) is given by the sample
variance

Var(A)NS
B

1
NS

NS∑
i=1

(
Ai −ANS

)2
. (2.21)

To prove that this estimator is biased, consider the expectation value which can be written as

〈Var(A)NS
〉 =

〈
1

NS

NS∑
i=1

(
Ai −ANS

)2
〉

=
1

NS

NS∑
i=1

〈
A2

i −
2

NS

Ai

NS∑
j=1

Aj +
1

N2
S

NS∑
j=1

Aj

NS∑
k=1

Ak

〉
=

1
NS

NS∑
i=1

[
NS − 2

NS

〈A2
i 〉 −

2
NS

NS∑
j=1, j,i

〈AiAj〉

+
1

N2
S

NS∑
j=1
〈A2

j 〉 +
1

N2
S

NS∑
j=1

NS∑
k=1,k,j

〈AjAk〉

]
.

(2.22)
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2.1 Introduction to Monte Carlo Methods

For uncorrelated samples, this can be further simplified to

〈Var(A)NS
〉 =

1
NS

NS∑
i=1

[
NS − 2

NS

(
Var(A) + 〈A〉2

)
−

2(NS − 1)
NS

〈A〉2

+
1

NS

(
Var(A) + 〈A〉2

)
+

NS(NS − 1)
N2
S

〈A〉2
]

=
NS − 1

NS

Var(A).

(2.23)

Hence, to get an unbiased estimator of Var(A) the biased estimator in Eq. (2.21) must be multiplied
by NS/(NS − 1). According to the central limit theorem, the sample averages are distributed like a
Gaussian distribution with mean 〈A〉 and variance Var(A)/NS . Thus, the sample variance can be
used to estimate the 68 % confidence interval of the sample average,

〈A〉 =
1

NS

NS∑
i=1

Ai ±

√√√√√
1

NS(NS − 1)

NS∑
i=1

©«Ai −
1

NS

NS∑
j=1

Aj
ª®¬

2

. (2.24)

Markov-chain sampling, on the other hand, starts at an initial configuration and evolves it. This
implies two problems: First, based on the initial configuration, the Markov chain needs some time in
order to thermalize toward the desired probability distribution. Second, after the Markov chain has
thermalized, the sample average uses correlated samples which renders Eq. (2.24) invalid.

The mixing time τmix is the time needed by the Markov chain to reach the equilibrium distribution
from the worst initial configuration. Unfortunately, the exact determination of τmix is not at all
an easy problem [48]. (It is possible to construct lower and upper bounds for τmix using the later
defined autocorrelation time of the slowest mode, which contains information about the correlation of
samples when equilibrium is already achieved. However, this upper bound is usually very large.) A
practical estimate of τmix can be obtained by the following procedure: Start from two opposite initial
configurations (e.g., around a phase transition from an ordered and an unordered initial configuration).
If the two chains converge to the same configuration after some time, it is most probably thermalized
and an approximate value of τmix is found.

This strategy is formalized by the coupling of Markov chains [19, 48]. Here, a chain is started from
every possible initial configuration. If two chains yield the same configuration after a time step, they
are merged. After all chains were merged, all correlations with the initial configurations are lost and
an upper bound for τmix is found. Clearly, this method is only applicable to specific systems. Also, in
some situations, the upper bound determined by the coupling method can be far too large [56].

Once the Markov chain is thermalized, sample values of an observable can be taken. This sampling
is done in fixed time intervals δt (for the Metropolis algorithm this corresponds to sampling after a
fixed number of proposed moves). The fact that these samples are correlated breaks the central limit
theorem but the strong law of large numbers still holds. Therefore the sample average still gives a good
estimate of 〈A〉. However, the variance of the sample average in Eq. (2.18) does not reduce to the
simple form in Eq. (2.20) because the correlators γi, j can be unequal 0, also for i , j. Nevertheless,
an unbiased estimator can be found [57]. If the Markov chain is in equilibrium, the correlators
are invariant under time translations and one can define γt B γi, j , where t = |i − j |. Counting in

11



Chapter 2 Event-Chain Monte Carlo Algorithm

Eq. (2.18) the number of pairs of i and j with the distance d = i − j for values of i, j ∈ {1, . . . ,NS}

(with the restriction i , j) results in the equation

Var(ANS
) =

1
NS

γ0 + 2
NS−1∑
t=1

(
1 −

t
NS

)
γt

 (2.25)

for the variance of the distribution of the sample averages. For d = 1, there are NS − 1 pairs (fix j and
let i = j + 1, which is always possible except for j = NS). Similarly, there are NS − 2 pairs for d = 2
and generally NS − d pairs for d ∈ {−(NS − 1, . . . ,−1,1, . . . ,NS − 1)}. The absolute value in t = |d |
yields an additional factor of 2.

The variance of the distribution of the sample averages is often estimated by using an estimate for
γt . However, the most obvious estimator,

ct =
1

NS − t

NS−t∑
i=1
(Ai −ANS

)(Ai+t −ANS
), (2.26)

is biased (since 〈cT 〉 , γt ). Nevertheless, these quantities can be used to construct an approximately
unbiased estimator for the variance of the distribution of the sample averages [57],

Var(A)NS
=

c0 + 2
∑T

t=1(1 − T
NS
)ct

NS − 2T − 1 + T (T+1)
NS

. (2.27)

T is a cut-off parameter in the sum. To understand the underlying approximation of this estimator, the
autocorrelation time τcor must be introduced. It is defined for every observable A as [58]

τcor = lim
t→∞

sup
t

− log |γt/γ0 |
. (2.28)

This is motivated by the fact that the normalized autocorrelation function γt/γ0 typically decays
exponentially (∼ exp(−t/τ)) for large times t. Equation (2.28) extracts the largest time-scale of the
decay of the normalized autocorrelation function. The estimator for the variance of the distribution of
the sample averages in Eq. (2.27) is only a good approximation if τcor is finite so that the sum can
be truncated for T � τcor/δt. It should also be noted that for T close to NS − 1, the estimator in
Eq. (2.27) is calculated by the ratio of two small numbers with a fluctuating numerator. This gives an
unreasonable approximation. Thus, all together, one should choose τcor/δt � T � NS .

In practice, the usage of Eq. (2.27) is non-trivial. The first possibility is to study the decay of ct with
increasing t, try to extract τcor and choose T based on this. In a more sophisticated way, the estimate
Var(A)NS

is monitored in dependence of T up to some value Tmax. If the estimate gets constant, this
value is an unbiased estimate of the variance of the distribution of the sample averages. However, ct
is essentially a random number for t � τcor/δt. If Tmax was chosen very large, more such numbers
would be included in the estimator which gives rise to increasing noise as T approaches Tmax. This can
make the extraction of the constant value in the plot difficult. Furthermore, this approach demands the
possibly time-consuming computation of ct for all values of t between 0 and Tmax and the choice of
Tmax cannot be automatized.
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2.1 Introduction to Monte Carlo Methods

The blockingmethod estimates the variance of the distribution of the sample averages computationally
more efficient by elegantly avoiding the computation of ct and the choice of Tmax [6, 57]. At first,
the variance of the distribution of the sample averages is estimated assuming that the samples are
independent [see Eq. (2.24)]. Of course, this will underestimate the true variance. Then, the set of
samples is replaced with a new set by substituting two adjacent samples with their average value. The
new set of samples is therefore half as large as the original one. For this set, again the apparent variance
is computed assuming that the samples are independent (the average value remains unchanged). This
procedure is repeated until the new set of samples only consists of two samples. Bunching the data
like this makes the sets of samples increasingly independent and the apparent variance approaches the
true variance of the distribution of the sample averages obtained through the Markov-chain sampling.
Again, this is only true if the total observation time NSδt exceeds the autocorrelation time τcor.

The variance of the distribution of the sample averages and the influence of the time interval δt can
be further understood by introducing the integrated autocorrelation time [58]

τint =
1
2
+

∞∑
t=1

γt
γ0
. (2.29)

This quantity contains information about all the different time-scales that are present in the normalized
autocorrelation function. With this, Eq. (2.25) can be approximated as [46]

Var(ANS
) ≈

1
NS

Var(A)
(
1 +

2τint
δt

)
. (2.30)

(Note that constructing an estimator for τint would essentially yield the estimator for Var(ANS
) in

Eq. (2.27) [57, 59].) The variance of the distribution of the sample averages depends on the ratio
τint/δt of the integrated autocorrelation time and the time interval between two samples. If the ratio
is small, the different samples get uncorrelated and the variance approaches the one of independent
samples. In contrast, if the ratio is very large, the variance grows. It is however not dependent on
the time interval δt, but on the ratio τint/NSδt of the integrated autocorrelation time and the total
observation time. This ratio is just a measure on how many uncorrelated information can be extracted
from the samples of the Markov chain. Although it would be a possibility to compute a sample after
every step of the Markov chain, it does not decrease the error as two successive samples would still be
highly correlated and a lot of samples would be necessary. It is noteworthy, as a final remark, that
using the coupling method even fully decorrelated samples like the ones obtained by direct sampling
can be created with a finite amount of backtracking (called coupling from the past) [60].
The data analysis of the correlated samples stemming from Markov chains assumed that the

autocorrelation time τcor is finite. However, near a second-order phase transition the spatial correlation
length diverges, associated with a divergent autocorrelation time τcor (critical slowing down) [5, 58].
Qualitatively, the information of a local update of a configuration in a single step of the Markov
chain has to propagate over the complete correlation volume before a new statistically independent
configuration is obtained. However, in any numerical simulation the correlation length cannot actually
diverge since the system size sets an upper bound. This implies that the autocorrelation time scales
with the system size (finite-size scaling [46]). Different implementations of a Markov chain can then
speed up the process of obtaining independent samples in the vicinity of the phase transition (for
example, reversible vs. irreversible chains or local vs. non-local cluster moves).

13



Chapter 2 Event-Chain Monte Carlo Algorithm

2.2 Hard-Sphere Model

The hard-sphere model defined below was one of the first ever systems studied using both Monte Carlo
algorithms and molecular dynamics (that is, the explicit numerical integration of Newton’s equations
of motion) [1, 2, 61, 62]. In three dimensions, these references showed a phase transition which is,
in fact, a first-order phase transition from a fluid (disordered) state to a crystalline solid (ordered)
state [63]. More surprisingly, in 1962 Alder and Wainwright observed in their molecular-dynamics
simulation of hard spheres in two dimensions (hard disks) a similar fluid-solid phase transition [64].
This was not expected because long-range positional (crystalline) order for two-dimensional systems
with short-range interactions is forbidden [65]. In 1968, Mermin resolved the contradiction by showing
that the solid in two dimensions is based on long-range orientational order [66]. (This means that the
orientation of links between hard disks has long-range correlations.) However, the precise nature of
the phase transition was still unknown until 2011. In this year, Bernard and Krauth successfully used
ECMC simulations to study the melting of two-dimensional hard disks [15].

This section introduces the hard-sphere model and describes two possible simulations of this model:
first, using rejection sampling and second, using the Metropolis algorithm. The latter uses a Markov
chain to sample the desired probability distribution while the former samples it directly. In Section 2.7,
the simulation of hard spheres using ECMC is discussed. The answer to the nature of the phase
transition of hard disks will be given there only after the ECMC algorithm is understood (just like it
played out historically).
Hard spheres of diameter σ in d dimensions are particles with the following pairwise interaction

potential,

U(r1,r2) =

{
0 if |r1 − r2 | ≥ σ,

∞ if |r1 − r2 | < σ.
(2.31)

r1,r2 ∈ R
d are the d-dimensional position vectors of the center of the spheres and |r| denotes the

euclidean norm of the vector r. The potential yields two different kinds of configurations. In forbidden
configurations at least one pair of hard spheres overlaps and the Boltzmann weight exp(−βU(c)) that
appears in the Boltzmann distribution in Eq. (2.3) is zero. Allowed configurations, in which there
are no overlaps of spheres, all have the same Boltzmann weight of value one. Due to the diverging
potential there is no energy scale and the phase diagram is identical at all values of β. It depends
only on one parameter which is for N hard spheres in a box of volume V the packing fraction η. This
is defined as the ratio of the volume occupied by the spheres and the volume of the box. In two
dimensions it is given by η = Nπσ2

/V .
The rejection sampling algorithm for N hard spheres to generate all allowed configurations with

the same probability is constructed straightforwardly: Place each of the spheres independently in
the system and reject the forbidden configurations (see Fig. 2.2). However, this algorithm gets very
costly for all but the smallest and least dense systems because a great number of the generated samples
are forbidden (see [6, Section 2.2.2] where only 6 out of 106 samples were accepted for N = 16
two-dimensional hard disks at the packing fraction η = 0.3).
The Metropolis algorithm for N hard spheres is implemented as follows: Start from an allowed

configuration c. Then, pick a random hard sphere and sample a random displacement for each direction
between −δ and δ. If the configuration c′ with the displaced hard sphere is allowed, it is accepted (see
Fig. 2.3). This procedure is repeated. The acceptance rate of a simulation can be changed by adjusting
the parameter δ of the proposal distribution. If δ is small, the acceptance rate will be high but it will
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Figure 2.2: Three generated configurations of the rejection sampling algorithm for N = 5 hard disks at the
packing fraction η = 0.12. First, the centers (shown as red crosses) of the disks with radius σ (shown as blue
areas) are distributed randomly in the system. The generated configuration is accepted if there is no overlap
between disks (shown as red areas). (a): An allowed configuration. (b): A forbidden configuration with one
overlap between hard disks. (c): A forbidden configuration with three overlaps between hard disks.

take a long time to decorrelate since the hard spheres only travel a small path in each move. In contrast,
if δ is too large a lot of moves will be rejected, which again yields on average a small traveled path
in each move. (A rule of thumb is that the acceptance rate should be of the order of 1/2 [6].) The
check for overlaps after a move of a sphere can be implemented efficiently by using a cell-occupancy
system. The system is divided into cells with a side length of at least 2σ. At the beginning of the
simulation a map from each cell onto the spheres within the cell is established. A sphere in a given
cell can then only overlap with spheres in the same (as there can be more than one sphere in the same
cell) or neighbored cells. On each move, the cell-occupancy system must be kept consistent.

The Metropolis algorithm allows to sample configurations at particle numbers and densities that are
far out of reach for the rejection sampling algorithm. However, upon entering the solid phase there is a
considerable slowdown (see [6, Section 2.2.3] where a particular initial state with N = 256 hard disks
at the packing fraction η = 0.72 even shows through after over 25 billion attempted moves) which
makes it impossible to study the phase transition of the two-dimensional hard-disk model [15, 62].

2.3 Factorized Metropolis Filter

The ECMC algorithm, similar to the Metropolis algorithm, uses a Markov chain to sample the
Boltzmann distribution. It is conceived for configurations c = {s1, . . . , si, . . . , sN } described by
continuous variables si, where i is a unique identifier. si may represent, for example, the position
of the ith particle in the system or the angle of a spin on the ith lattice site. For concreteness, the
remaining part of this chapter considers N point-like particles with positions {r1, . . . ,rN }, ri ∈ R

d.
The traditional Metropolis acceptance criterion of a new configuration in Eq. (2.16) is replaced by a
factorized Metropolis filter which applies to models whose probability distribution can be split into
sets of independent factors [9, 17]. This section uses the mathematical formulation presented in [7].

For the case of the Boltzmann distribution in Eq. (2.3), which depends on the total potential U of a
configuration c, each factor M is associated to a factor potential UM . The factors are constructed so
that the total potential is written as a sum over the factor potentials. Formally, let P be the power set
of the particle identifiers (that comprises all identifiers, pairs of identifiers, triplets, etc.) and T be the
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x

x

Figure 2.3: Two different moves of the Metropolis algorithm for N = 5 hard disks with radius σ (shown in blue)
at the packing fraction η = 0.12. Each move consists of three steps: First, a random disk is picked (shown in
gray). Second, a random new center position for the center of this disk (shown as a red cross) is proposed within
a square with side length 2δ around the old center (shown as a red square). Third, if the new center position
yields an allowed configuration with no overlaps between disks (shown as read areas), the new configuration is
accepted. Otherwise it is rejected. (a): An accepted move of the Metropolis algorithm. (b): A rejected move of
the Metropolis algorithm.

set of interaction types. A factor is then defined as M B (IM,TM ), where IM ∈ P is the index set and
TM ∈ T the type of the factor. The total potential of a configuration is then given by

U(c = {r1, . . . ,rN }) =
∑

M ∈M
UM (cM = {ri : i ∈ IM }). (2.32)

The set M only contains factors that have a non-zero contribution to the total potential for some
configuration c ∈ Ω. A factor potential UM is of type TM and only depends on the particle positions
corresponding to the identifiers appearing in the index set IM (the factor configuration cM ).

The deconstruction of the total potential into factor potentials is not unique. Consider, for example,
the pairwise interaction of the particles via the Lennard-Jones potential [67], which approximates,
e.g., the interaction between a pair of neutral atoms. The total potential of N particles is given by

U(r1, . . . ,rN ) =
N∑
i=1

i−1∑
j=1

kLJ


(

σLJ
|rj − ri |

)12

−

(
σLJ
|rj − ri |

)6 , (2.33)
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where kLJ and σLJ are chosen constants. An obvious choice for the factors is ({i, j},LJ) with the factor
potential

U({i, j },LJ)(ri,rj) = kLJ


(

σLJ
|rj − ri |

)12

−

(
σLJ
|rj − ri |

)6 (2.34)

for all possible pairs of particles {i, j}. It is also possible to split each of these pair factors further into
({i, j},LJ12) and ({i, j},LJ6). The factor potential for the former includes only the minuend in Eq. (2.34)
and the latter only the subtrahend. The choice of the factors may influence the convergence properties
of ECMC, although the sampled steady state is always given by the Boltzmann distribution [7, 14].
Also, the set of factors can be infinite even for finite N [29]. As an example, consider the pairwise
Coulomb interaction in a finite system with periodic boundary conditions. The interaction between the
particles i and j can be regarded as a sum of separate-image Coulomb interactions between i and each
periodic copy of j (from which there are infinitely many), each of these treated in a distinct factor.

Using the factorized total potential from Eq. (2.32) reduces the Boltzmann distribution in Eq. (2.3)
to a product over factor weights,

πB(c) =
1
Z

∏
M

e−βUM (cM ). (2.35)

(Here and in the following, products and sums over factors M involve M ∈ M.) The factorized
Metropolis filter introduces a similar factorization for the acceptance probability of a move from the
configuration c to c′,

AFact
(c→ c′) B

∏
M

min
[
1,e−β∆UM (cM→c′M )

]
=

∏
M

e−β∆U
+
M (cM→c′M ), (2.36)

with∆UM (cM → c′M ) B UM (c
′
M )−UM (cM ) and x+ B max(0, x). Strictly speaking, one should refer

to exp(−βUM ) as a Boltzmann factor and to exp(−β∆U+M ) as filter factor. M is just the generalized
identifier for these factors. Nevertheless, M itself is called a factor for simplicity [7].
The acceptance probabilities of the factorized Metropolis filter satisfy a condition very similar to

the detailed-balance condition for transition probabilities in Eq. (2.15),

1
Z

∏
M

e−βUM (cM )︸                ︷︷                ︸
πB (c)

∏
F

e−β[UF (c
′
F )−UF (cF )]

+

︸                         ︷︷                         ︸
AFact
(c→c′)

=
1
Z

∏
M

e−βUM (c
′
M )︸                ︷︷                ︸

πB (c
′
)

∏
F

e−β[UF (cF )−UF (c
′
F )]

+

︸                         ︷︷                         ︸
AFact
(c′→c)

, (2.37)

because the Boltzmann distribution and the factorized Metropolis filter factorize in the same way (i.e.,
the two products in Eq. (2.37) can be combined into a single product over M). A single factor then
obeys this condition for the same reasoning as the transition probabilities of the Metropolis algorithm
(see Section 2.1.2.1). The factorized Metropolis filter can be introduced for general probability
distributions, similar to the acceptance probability of the original Metropolis algorithm. To obey the
condition in Eq. (2.37), the weight must factorize like the Boltzmann distribution in Eq. (2.35).

Just replacing the acceptance probability in the Metropolis algorithm by the factorized Metropolis
filter yields a less efficient algorithm. That is because the original Metropolis filter accepts a new
configuration with greater or equal probabilities. However, only the factorized filter formulates a
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consensus principle. To see this, view the filter as a conjunction of Boolean random variables,

XFact
(c→ c′) =

∧
M

XM (cM → c′M ), (2.38)

where all factorwise random variables are drawn independently,

XM (cM → c′M ) =

{
True if ranM (0,1) < e−β∆UM (cM→c′M ),
False otherwise.

(2.39)

Here, ranM (0,1) denotes a uniformly distributed random number between 0 and 1 drawn for the factor
M . The move c→ c′ is accepted (that is, the random variable XFact

(c→ c′) = True) if all factors M
accept the move independently, each of them with the probability exp(−β∆U+M (cM → c′M )).

The lifting concept will introduce a restriction to infinitesimal changes of configurations described
by continuous variables (see Section 2.4) and this limit of the factorized Metropolis filter must be
understood. Let the continuous position ri of the configuration c be changed along the x-axis by dxi
which proposes a new configuration c′ to be either accepted or rejected by the factorized Metropolis
filter. (This can be generalized to an arbitrary infinitesimal change of the continuous variable si,
which includes also, for example, the continuous rotation of a spin on the ith lattice cite.) Such an
infinitesimal move implies an infinitesimal change of the factor potentials for which i ∈ IM ,

dUM (cM → c′M ) = q̃M ,i(cM ) dxi, (2.40)

with the factor derivative
q̃M ,i(cM ) B ∂xiUM (cM ) =

∂UM

∂xi
(cM ). (2.41)

The factor event rate with respect to i is defined as

qM ,i(cM ) B βq̃+M ,i(cM ). (2.42)

This definition can be used if one regards the acceptance probability of a single factor M , which gets

e−β∆U
+
M (cM→c′M )

∆UM→dUM
−−−−−−−−−−→ 1 − β dU+M (cM → c′M ). (2.43)

Therefore, the factorized Metropolis filter includes a sum over the factors,

AFact
(c→ c′) = 1 − β

∑
M

dU+M (cM → c′M ). (2.44)

If the change of configurations stems from an infinitesimal change of ri , this can be rewritten by using
the factor event rates in Eq. (2.42) to

AFact
(c→ c′) = 1 −

∑
{M : i∈IM }

qM ,i(cM ) dxi . (2.45)

Hence, qM ,i dxi yields the probability that the factor M breaks the consensus of Eq. (2.38) due to the
change of the configuration given by the infinitesimal change dxi of the position ri along the x-axis.
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2.4 Lifting Framework

The general idea of the lifting framework is to split each configuration into several configurations and
to construct a Markov chain in the new space of configurations. Projecting back this chain onto the
original space of configurations can then improve the mixing time [23, 24]. The splitting consists of
augmenting the space of configurations Ω with auxiliary variables which are used to propose new
configurations. In ECMC, the auxiliary variables resemble the velocity of Newtonian mechanics2 and
lend persistence to individual Monte Carlo moves. Together with the factorized Metropolis filter, this
allows to construct an irreversible Markov chain on the augmented space, i.e., a chain with transition
probabilities which break detailed balance and obey maximal global balance. The latter means that
flows between two configurations are unidirectional (Fc→c′ = p(c→ c′) π(c) > 0⇒ Fc′→c = 0) and
that there are no rejections (Fc→c = 0). Again, the mathematical formulation of [7] is used.
In ECMC, any physical configuration c is lifted so that it includes the lifting variables describing

the active particles. For concreteness, this section assumes without loss of generality that there is a
single active particle a with the normalized velocity v̂x in the appropriate units which moves the active
particle parallel to the x-axis. The velocity stays constant throughout this section and an augmented
configuration is simply written as (c,a) (although strictly speaking, the velocity should be included
among the lifting variables). In principle, the Boltzmann distribution now depends on a. However, the
requirement πB[(c,a)] = πB(c)/N allows to absorb the factor 1/N into the normalization constant of
the probability distribution. The lifted configuration (c,a) determines the proposed lifted configuration
(c′,a):

(c = {r1, . . . ,ra, . . . ,rN },a) → (c
′
= {r1, . . . ,ra + v̂x∆t, . . . ,rN },a). (2.46)

In the proposed configuration (c′,a) the active particle is displaced by v̂x∆t where ∆t denotes a fixed
time step which converts the velocity into a displacement. If (c′,a) is accepted by the factorized
Metropolis filter, a stays active and a new configuration with a again displaced by v̂x∆t is proposed.
It is still necessary to clarify what happens after a proposed configuration is rejected. This is first
answered for pair factor potentials between the particles which only depend on the distance between
them, U({i, j },TM )

(ri,rj) = U({i, j },TM )
(ri − rj), and afterwards generalized.

The new configuration (c′,a) is accepted using the consensus principle formulated in Eq. (2.38):
Each factor M where a ∈ IM determines independently if the displacement of a is accepted or not
using Eq. (2.39). (The new configuration is trivially accepted by all factors where a < IM .) In a
system with N particles and pairwise distance-dependent interactions, the constructed algorithm
satisfies maximal global balance if the displacements of a are infinitesimal and if there is a single
factor M = ({a, t},TM ) which breaks consensus (or, in other words, vetoes the displacement of a). On
such a veto, the lifting move

(c,a) → (c, t) (2.47)

must be introduced. Stated otherwise, if a target particle t rejects the displacement of the active
particle a, the configuration c remains unchanged but t becomes active with the same velocity v̂x .
Hence, lifting moves replace rejections and the resulting algorithm is rejection-free on the augmented
space. To demonstrate that the constructed algorithm satisfies global balance, that is,

F(c,a) = FMass
(c,a) + FLift

(c,a)
!
= πB(c), (2.48)

2 The velocities introduced here are not derived from the mechanical equations of motions and their conservation laws.
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Chapter 2 Event-Chain Monte Carlo Algorithm

the flow into an augmented configuration is split into two parts. FMass
(c,a) denotes that mass flow, which

is the flow into (c,a) where a was displaced and the new configuration was accepted. FLift
(c,a) denotes

the lifting flow, i.e., the flow where another particle t was displaced to propose a new configuration
which was then rejected by the factor ({t,a},TM ).

In the following, the proof that the introduced algorithm obeys global balance for the case of two
particles {1,2} interacting by the factor potential U({1,2},TM )

(r1 − r2) is presented first. For this case,
the time steps (and hence the displacements of the active particle) do not need to be infinitesimal yet.
Suppose, without restriction, that at a given time the augmented configuration is (c = {r1,r2},a = 1).
This configuration can only be reached by two other augmented configurations,

(c′,2)

(c′,1)

(c,1)

(c,2)

(c′′,2)

FLift
(c′ ,2)

FMass
(c ,1)

FLift
(c ,1)

FMass
(c′′ ,2)

, (2.49)

where c′ = {r1 − v̂x∆t,r2} and c′′ = {r1,r2 + v̂x∆t}. Since starting from (c′,1) the configuration (c,1)
is always proposed (that is, the proposal distribution g[(c′,1), (c,1)] = 1), the transition probability
pFact
(c′→ c) is just given by the the acceptance probability AFact

(c′→ c) of the factorized Metropolis
filter [see Eq. (2.36)]. The mass flow into (c,1) is thus given by

FMass
(c,1) = πB(c

′
)AFact

(c′→ c) = πB(c)A
Fact
(c→ c′). (2.50)

The second equality used that the factorized Metropolis filter satisfies a condition similar to the
detailed-balance condition as expressed in Eq. (2.37). Since there is only a single factor, the mass
flow takes the form

FMass
(c,1) = πB(c) exp

[
−β

(
U({1,2},TM )

(r1 − v̂x∆t − r2) −U({1,2},TM )
(r1 − r2)

)+]
. (2.51)

The lifting flow into (c,1) depends on the probability that the proposed change from (c,2) to (c′′,2) is
rejected,

FLift
(c,1) = πB(c)

[
1 − AFact

(c→ c′′)
]

= πB(c)

[
1 − exp

[
−β

(
U({1,2},TM )

(r1 − r2 − v̂x∆t) −U({1,2},TM )
(r1 − r2)

)+] ]
.

(2.52)
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2.4 Lifting Framework

Thus, FMass
(c,1) and FLift

(c,1) add up to πB(c) and the global-balance condition is satisfied. Since the
particles are displaced persistently in one direction and there are no rejections, even maximal global
balance is satisfied. The proof relies on the fact that c′′ is a translated version of c′ and the factor
potential is the same in these configurations. (In principle, it must also be shown that the flow out of
an augmented configuration equals its Boltzmann weight. However, this is trivially true because there
are no rejections.)

Trying to generalize this proof to N particles with the identifiers {1, . . . ,N} interacting by a single
type of pair factor potentials U({i, j },TM )

(ri − rj) reveals a problem. There is a single mass flow from
(c′,1) into (c,1). The analogue of Eq. (2.51) includes a product over N − 1 filter factors which contain
1 in their index set (that is, a product over the exponential functions with all factor potentialsU({1,t },TM )

with t , 1). Also, there are N − 1 lifting flows from (c, t) into (c,1) with t , 1. Each of these flows
depends on the probability that the factor ({1, t},TM ) vetoes the proposed change of configuration by
displacing t starting from the configuration (c, t). The total lifting flow into (c,1) therefore contains a
sum over the filter factors which include 1 in their index set. Global balance is restored by considering
infinitesimal time steps because the factorized Metropolis filter then includes a sum as already seen in
the infinitesimal limit of the factorized Metropolis filter in Eq. (2.44).

Infinitesimal time steps dt correspond to infinitesimal displacements dxa. The probability that the
factor M (a ∈ IM ) breaks consensus due to an infinitesimal change dxa of the position ra along the
x-axis is given by qM ,a dxa, where qM ,a is the event rate defined in Eq. (2.42). The mass flow into
(c,a) depends on the acceptance probability of displacing the particle a by d(−xa). Denote by qM ,−a

the appropriate event rate
qM ,−a = β

[
∂−xaUM (cM )

]+
. (2.53)

The mass flow is then given by

FMass
(c,a) = πB(c)

©«1 −
N∑

t=1,t,a
q({a,t },TM ),−a

(ra,rt ) d(−xa)
ª®¬ . (2.54)

The lifting flow into (c,a) is equal to the sum of the flows from all configurations (c, t) with t , a
where the displacement dxt of rt was rejected,

FLift
(c,a) = πB(c)

N∑
t=1,t,a

q({a,t },TM ),t
(ra,rt ) dxt . (2.55)

Since the pair factor potentials U({a,t },TM )
(ra − rt ) only depend on the difference of the positions, the

probability of a veto is the same when displacing t in one direction or a in the inverse direction,

q({a,t },TM ),t
(ra,rt ) dxt = q({a,t },TM ),−a

(ra,rt ) d(−xa). (2.56)

Thus, in the infinitesimal limit the lifting flow and the mass flow into (c,a) (and similarly into all
augmented configurations) again add up to πB(c). The same argumentation is valid if there are multiple
factor types TM , each of them with a distance-dependent pair factor potential (as will be shown below).
The presented proof relies on the infinitesimal limit of the time steps and assumes that there is always
a unique factor which vetoes a new infinitesimally changed configuration. For continuous factor
potentials, the infinitesimal limit also makes sure that the latter assumption is fulfilled.
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Chapter 2 Event-Chain Monte Carlo Algorithm

The lifting framework can furthermore treat factors M with more than two particles (|IM | > 2)
if the corresponding factor potential only depends on the distances of the involved particles [17].
Consider, analogously to Eq. (2.54), the mass flow into (c,a) where a can be part of several factors,

FMass
(c,a) = πB(c)

©«1 −
∑

{M : a∈IM }
qM ,−a(cM ) d(−xa)

ª®®¬ . (2.57)

The lifting flow into (c,a) is

FLift
(c,a) = πB(c)

∑
{M : a∈IM }

∑
{t∈IM : t,a}

λt→a qM ,t (cM ) dxt . (2.58)

Here, λt→a is the lifting probability to change the active particle from t to a once the factor depending
on both particles vetoed the displacement of t. The mass and the lifting flow should add up to πB(c).
This is achieved independently for each factor M where a ∈ IM ,

qM ,−a(cM ) d(−xa) =
∑

{t∈IM : t,a}
λt→a qM ,t (cM ) dxt . (2.59)

If the factor M consists of only two particles t and a, and its potential only depends on the distance
of these, Eq. (2.56) leads to λt→a = 1, i.e., the presented lifting scheme for such pair factors is also
valid if there are more than one different types. Distance-dependent interactions between more than
two particles are invariant under the translation of the participants so that the factor derivatives with
respect to the different particles sum up to zero,∑

k∈IM

∂xkUM (cM ) = 0. (2.60)

The index set IM is split up into two sets I+M (with positive factor derivatives) and I−M (with negative
factor derivatives) according to

k+ ∈ I+M ⇔ ∂x
k+

UM (cM ) ≥ 0,

k− ∈ I−M ⇔ ∂xk−UM (cM ) < 0.
(2.61)

For each k+ ∈ I+M , qM ,−k+ = 0. That implies λt→k+ = 0, i.e., there are no lifting moves toward
k+. Similarly, for each k− ∈ I−M , qM ,k− = 0, i.e., the probability that the factor M breaks consensus
vanishes if k− is displaced. This implies λk−→t = 0. Lifting moves of a vetoing factor M are always
from an active particle in I+M to a target particle in I−M . Equation (2.59) should be obeyed for all
a = k− ∈ IM . Using the definition of the event rate [see Eqs. (2.42) and (2.53)], one gets

∀k− ∈ I−M : −∂xk−UM (cM ) =
∑

k+∈I+M

λk+→k− ∂xk+
UM (cM ) (2.62)

The differentials can be omitted due to the translational invariance of the potential: displacing a in
one direction has the same effect as displacing all other particles t in the factor in the inverse direction.
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2.4 Lifting Framework

Also, there is definitely a lifting move if M breaks consensus because the algorithm should be rejection
free:

∀k+ ∈ I+M :
∑

k−∈I−M

λk+→k− = 1. (2.63)

The last two equations define the lifting probabilities which are only uniquely defined up to |IM | = 3.
For this case there are two possibilities: First, |I+M | = 2 trivially yields λk+→k− = 1 for every k+ ∈ I+M
and the unique k− ∈ I−M . Second, |I−M | = 2 allows to lift from the unique k+ ∈ I+M to two possible
particles k−i (i ∈ {1,2}) with the probabilities

λk+→k−i
= −

∂xk−i
UM (cM )

∂x
k+

UM (cM )
. (2.64)

For |IM | ≥ 4, the choice of the lifting probabilities is not unique. A particular simple choice is

λk+→k− =
|∂xk−UM (cM )|∑

t−∈I−M
|∂xt−UM (cM )|

. (2.65)

Further possible choices and their influence on ECMC are discussed in [7].
Up to this point, the lifting framework allowed to perform infinitesimal displacements of an active

particle in a fixed direction until a unique factor breaks consensus. On such a veto, a lifting move
toward another particle in the factor is performed. The constructed lifting probabilities finally yield an
algorithm which obeys maximal global balance. However, the proofs relied on the fact that all factor
potentials of the interacting particles are only distance-dependent. Albeit such translational invariant
interactions are very relevant in the field of statistical mechanics, the constructed ECMC algorithm
lacks generality. If it is not possible to decompose an interaction further into factor potentials with
translational symmetry, a general solution is to implement backward lifting moves for this factor. That
means, if the non-symmetric factor vetoes the displacement of k, the velocity of k gets inverted [9].
To see that this procedure satisfies global balance, consider a single non-symmetric factor Mns. (This
can be done because the parts depending on the factors in the mass and the lifting flow in Eqs. (2.57)
and (2.58) compensate independently for each factor.) The lifting flow from this factor into (c, k) is
given by

FLift,Mns
(c,k)

= πB(c)qMns,−k
(cM ) d(−xk), (2.66)

which trivially compensates the corresponding part in the mass flow of this factor. However, this
scheme only satisfies global balance but not maximal global balance. In a simulation with both
kinds of factors, the symmetric ones would be treated by the maximal global balance lifting scheme
whereas the non-symmetric ones introduce lifting moves which invert the velocity. To the best of the
authors’ knowledge, there is no general way to restore maximal global balance for non-symmetric
factor potentials at this point in time.
For external potentials a lifting scheme obeying maximal global balance can be constructed [9].

When the external potential rejects a displacement of a particle, instead of inverting the velocity of this
particle, the potential is moved forward (or all particles are displaced backwards) until this is rejected
by the next active particle. The same scheme can also be used for hard-wall boundary conditions.
However, the influence of this scheme on the mixing dynamics of ECMC has not been studied yet.
(Periodic boundary conditions, of course, do not need such a treatment.)
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Chapter 2 Event-Chain Monte Carlo Algorithm

It is noteworthy that for systems with only distance-dependent interactions the presented lifting
schemes can be easily generalized to a fixed number nac > 1 of independent active particles, all
moving with the same velocity [39] (see publication in Appendix B). Factors only involving a single
active particle can be treated as described before. A slightly different treatment is needed for factors
involving several active particles. In principle, these factors veto a new configuration based on the
infinitesimal change of the factor potential due to the simultaneous displacements of the involved
active particles. For pairwise distance-dependent interactions between two active particles, the factor
potential stays constant and this factor never breaks consensus. Nevertheless, both active particles
can be treated independently (that is, the factor can veto a displacement of each active particle).
Then, lifting moves toward an already active particle must be rejected. The same scheme is valid for
interactions which rely on the distances between more than two particles.

2.5 Event-Driven Implementation

The described algorithm could be implemented in a time-driven manner, for example, for a single active
particle: Initially, create a random augmented configuration. The active particle of this configuration
gets displaced by v̂x∆t repeatedly. On each step, all factors involving the active particle check if the
new configuration is accepted or rejected independently due to factorized Metropolis filter. If a factor
breaks consensus, a new particle gets active according to the presented lifting scheme probabilities.
This particle is again displaced repeatedly by v̂x∆t in the same manner.

In order to ensure an ergodic Markov chain, the direction of motion of the active particles needs
to be resampled in a not necessarily random way (for example, in a three dimensional system the
alignment axis of the normalized velocity can either be randomly chosen or changed in a cyclic
sequence). Only considering the velocity v̂x parallel to the x-axis, for example, would result in
constant positions with respect to all other Cartesian axes except the x-axis of all particles. In order
to avoid bias, this resampling should not happen after a certain number of lifting moves (also called
events) but after the sum of time steps equals a given chain duration TChain. The process in between
two changes of the direction of motion is the eponymous event chain. (Since the absolute value of the
velocity stays constant, one can also end an event chain when the cumulative sum of the sequential
displacements equals the chain length `.) The chain duration TChain can be fixed or chosen according
to a distribution and is an essential parameter for the performance of ECMC [13]. A similar procedure
must be applied in order to obtain sample averages of an observable (here, the relevant fixed quantity
is called sampling duration).
In the time-driven implementation, ∆t must be small on the one hand to prevent simultaneous

vetoing factors. On the other hand, the simulation is only global balanced for infinitesimal time steps.
For these reasons, a non-infinitesimal ∆t leads to an inexact algorithm. The check of the consensus
of the factors involving the active particle on every time step would also yield a slow simulation,
especially for long-range interactions.
The limitations of the time-driven implementation are overcome in an event-driven approach [7,

18, 68]. Assume there is a single active particle a and, since all factors are independent, only a
single factor M is considered in the following. Suppose that the position ra of a where a ∈ IM is
repeatedly changed with the velocity v̂x parallel to the x-axis in finite time steps ∆t, and denote by
cM , j∆t = {ra + jv̂x∆t,ri : i ∈ IM } the configuration after j time steps. Let πEvent

M (cM ,i∆t ) be the
conditional probability that i successive displacements of a were accepted, followed by a rejected
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2.5 Event-Driven Implementation

displacement afterwards. It is given by

πEvent
M (cM ,i∆t ) =

i−1∏
j=0

exp
(
−β∆U+M (cM , j∆t → cM ,(j+1)∆t )

)
×

[
1 − exp

(
−β∆U+M (cM ,i∆t → cM ,(i+1)∆t )

)]
.

(2.67)

In the limit of infinitesimal time steps dt (which implies infinitesimal positive potential changes dU+M ),
the second term on the right-hand site of Eq. (2.67) becomes β dU+M (cM ,∆tM

). Here, ∆tM is the time
where an event of the factor M and the subsequent lifting move takes place. The exponent of the
first term in Eq. (2.67) contains an integral of the factor event rate qM ,a(cM ,t ) for displacements
of a between 0 and |v̂x |∆tM (that is because the product in Eq. (2.67) can be changed to a sum
inside of the exponent). This yields the probability density πEvent of the positive potential change
∆U+M (cM → cM ,∆tM

) of an event taking into account only the increasing parts of the potential [7, 18]:

πEvent
(
∆U+M (cM → cM ,∆tM

)

)
= β exp

(
−β∆U+M (cM → cM ,∆tM

)

)
. (2.68)

The exponential distribution can be sampled by using inverse transform sampling (see Section 2.1.1)
as [44]

β∆U+M (cM → cM ,∆tM
) = − ln[ranM (0,1)]. (2.69)

Instead of accepting or rejecting the displacement of a at each time step, the order is inverted: First,
a positive potential change where the event takes place is sampled. Then, a is continuously displaced
along the x-axis (that is, in infinitesimal steps v̂x dt) until the cumulative positive potential change
equals the sampled value. At this point, the next displacement is rejected and a lifting move inside
the factor M is carried out. An implicit equation for the candidate event time ∆tM (and hence the
corresponding displacement ηM of a along the x-axis) depends on the integrated factor event rate as

β∆U+M (cM → cM ,∆tM
)︸                        ︷︷                        ︸

Sampled by Eq. (2.69).

=

∫ ∆tM

0
dt |v̂x | qM ,a({ra + v̂xt,ri : i ∈ IM }) (2.70)

Equation (2.70) can be viewed as a having an exponentially distributed random value of “energy” it
can spend. Every displacement increasing the factor potential costs while every displacement which
lowers the factor potential is free. When no energy is left, a lifting move takes place (see Fig. 2.4).
For several factors M involving a, each factor provides a candidate event time ∆tM and the next

event takes place at
∆tEvent

= min
{M : a∈IM }

∆tM . (2.71)

The lifting takes place in the factor which realizes this minimum. For continuous potentials, this factor
is uniquely defined. (Although finite-precision arithmetic could yield simultaneous events, these are
too rare to be relevant.)
The integration of the factor event rate in Eq. (2.70) can be tedious if it cannot be written in an

explicit analytical form. Also, the inversion of the factor potential can be non-trivial [7]. Introducing a
bounding factor potential can solve these problems. This must be constructed for every configuration
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Figure 2.4: Event-driven implementation of ECMC. An active particle a is part of two factors Mi , i ∈ {1,2}.
Displacing the active particle along the x-axis by v̂x∆t induces a change ∆UMi

of the factor potentials, and also
for the total potential ∆UM = ∆UM1

+ ∆UM2
. All plots show the dependence of these changes (scaled by β) on

v̂x∆t. (a): The change of the total factor potential ∆UM (shown in blue) can be split into changes of the factor
potentials ∆UMi

(shown in orange and green). (b): The change of the total potential ∆UM is replaced by the
change of the positive total potential ∆U+M where negative increments are replaced by horizontal lines (shown
in red, the black dashed line depicts where the change of the factor potential becomes positive again). In order
to sample the Boltzmann equation, the active particle needs to be displaced by v̂x∆tM where the positive total
potential change equals the sampled value − ln[ranM (0,1)]. Afterwards, a lifting move takes place in the factor
M . (c): Alternatively, the two factors Mi can be treated independently in the same manner as explained for the
factor M . This yields two displacements v̂x∆tMi

. The active particle is displaced by the smaller value v̂x∆tM1
and lifting takes place in the factor M1.

cM = {ri : i ∈ IM } so that the bounding factor event rate is an upper bound to the event rate of the
real factor potential for every configuration c′M ,∆t = {ra + v̂x∆t,ri : i ∈ IM } with ∆t > 0,

qBound
M ,a (c

′
M ,∆t ) ≥ qM ,a(c

′
M ,∆t ). (2.72)

The candidate event time ∆tM is then obtained by integrating the bounding factor event rate. However,
the resulting event has to be confirmed with the probability qM ,a(c

′
M ,∆tM

)/qBound
M ,a (c

′
M ,∆tM

) [69, 70].
Only on confirmed events, a lifting move takes place. (This process is usually called thinning.) A
particularly simple bounding factor event rate is a constant value, for example used in the cell-veto
algorithm.
The velocity of the active particle was, so far, chosen normalized and parallel to the x-axis. This

simplifies the notation as the factor event rate then depends on the partial derivative of the factor
potential along the x-axis. For general velocities v, this derivative is replaced by a directional derivative.
Moreover, the factor |v| in the integration of the event rate in Eq. (2.70) not only ensures correct units
but can also become numerically important.
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With general velocities v, the presented ECMC algorithm remains valid as long as the target particle
of a lifting move continues to move with the same velocity. It is possible to construct a global-balanced
algorithm for distance-dependent factor potentials which changes v during a lifting move [8, 71]. Here,
the normal component of the velocity with respect to the distance vector is reflected. However, this
version showed a reduced performance for hard-disk systems as it obeys detailed balance. Hence, the
version described in this thesis seems more promising (and is the one implemented in JF-V1.0).

Note that, in principle, the magnitude of the velocity could change between two different event
chains. This effectively influences the distribution of chain durations. As long as the resulting chain is
ergodic, this can just have, as mentioned, an influence on the performance of ECMC [13].

2.6 Cell-Veto Algorithm

In principle, the event-driven implementation of ECMC relies on the event-rate integration and
inversion for all factors M where a ∈ IM . For a system with N particles interacting by a long-range
pairwise potential (like the Coulomb potential), this gives O(N) integrations and inversions per event.
The overall complexity of ECMC can be reduced to O(1) by using the cell-veto algorithm [29].

For concreteness, consider the pair factors ({i, j},TM ) for all N(N − 1)/2 pairs where the factor
potential UM is only singular at ri = rj . (The described algorithm can be generalized in a
straightforward manner). The system is divided into cells Ci. A cell-occupancy system then maps
each particle onto the cell it belongs to and vice versa. For each pair of non-neighbored disjoint cells,
the cell-event rate qCell

M (Ca,Ct ) is computed so that (the active particle moves again with velocity v̂x)

qCell
M (Ca,Ct ) ≥ qM ,a(ra,rt ), ∀ra ∈ Ca,rt ∈ Ct . (2.73)

It gives an upper bound for the event rate of a single factor ({a, t},TM ) with the active particle located
in the active cell Ca and the target particle in the target cell Ct . Neighbored target cells must be
excluded in the discussed case because the cell-event rate would diverge. The cell-event rates are
tabulated in advance of the ECMC simulation together with the total cell-event rates

QCell
TM
(Ca) =

∑
Ct

qCell
M (Ca,Ct ), (2.74)

where the sum runs over all non-neighbored disjoint cells Ct of Ca. The total cell-event rate QCell
M (Ca)

is an upper bound for the summed event rates of the set of factors of type TM where the active particle
is located in Ca and interacts pairwise with hypothetical target particles located in each cell Ct . (For a
distance-dependent factor potential, the total cell-event rate does not depend on the active cell Ca.)
Remaining factors of type TM are the factors ({a, t},TM ) where t is in Ca or in a neighbor cell (nearby
particles), and surplus particles in cells containing more than one particle (see Fig. 2.5).

The candidate event time ∆tCell
TM

of the next cell-veto event is obtained according to Eq. (2.70),

∆tCell
TM
=
− ln[ran(0,1)]
βQCell

TM
(Ca)|v̂x |

, (2.75)

and competes with the event times of the factors concerning nearby and surplus particles, as well as
factors concerning distinct factor types. If ∆tCell

TM
is the smallest event time, there are two possible
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Figure 2.5: Cell-veto algorithm for N = 27 particles all interacting by ({i, j},TM ) pair factors with the factor
potential UM only singular at ri = rj . The system is divided into 36 cells and a map from the cells onto
its occupants is constructed. The total cell-event rate is an upper bound for the summed event rates of the
interactions between the active particle and a hypothetical target particle in each target cell. Thus, it can treat
the 16 factors between the single active particle and the cell-veto particles. The factors for the 5 nearby and 5
surplus particles must be considered separately. If the cell-veto event yields the smallest candidate event time in
competition with the ones of the nearby and surplus factors, Walker’s algorithm determines the veto cell. The
cell-veto particle in this cell gets active if the cell-veto event is confirmed.

outcomes: In the first outcome, the displacement v̂x∆tCell
TM

moves a outside of its cell Ca. Then, a is
placed on the boundary to the neighbored cell in the moving direction and the cell-occupancy system
is updated (as the cell-event rates are only valid upper bounds as long as the active particle is in its
active cell). In the second outcome, the displacement leaves the active particle in Ca. In this case, the
veto cell has to be determined (i.e., the vetoing factor has to be extracted from the set of factors treated
by the cell-veto algorithm).

The cell-veto event corresponds to the cell Ct with probability ∝ qCell
M (Ca,Ct ). This discrete sampling

problem is solved in O(1) by Walker’s algorithm [29, 72]. The cell-event rates qCell
M (Ca,Ct ) are cut

and reassembled for each possible active cell Ca so that at most two cut rates add up to the mean
cell-veto rate QCell

mean(Ca) = QCell
TM
(Ca)/NCell. Here, NCell is the number of target cells included in the

sum in Eq. (2.74). (This reassembling is done in advance of the ECMC simulation when the cell-event
rates are tabulated.) Let the reassembled rates be numbered by {1, . . . ,NCell}. The veto cell Ct is
then determined with probability ∝ qCell

M (Ca,Ct ) by sampling an uniformly distributed integer between
1 and NCell and afterwards an uniformly distributed real number between 0 and QCell

mean. The former
determines the relevant reassembled rate, the latter chooses one of the at most two contributing rates
and therefore the veto cell Ct .

The target particle t is the particle present in the sampled veto cell Ct . The event is finally confirmed
with the probability q({a,t },TM ),a

({ra + v̂x∆tCell
TM

,rt })/q
Cell
M (Ca,Ct ). Only on a confirmed event, t

becomes active. Otherwise, a is displaced by v̂x∆tCell
TM

and new events are computed. (If there is no
target particle in Ct , the event is trivially rejected.) The cell-veto algorithm treats a set of factors and
never performs the integration of the event rate in Eq. (2.70) for its factors. Instead, only a singular
factor event rate computation is performed per (confirmed or unconfirmed) event. This also implies,
that the total Boltzmann potential remains unknown during the evolution of the Markov chain [7].
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The performance of the cell-veto algorithm depends on the total cell-event rates QCell
TM
(Ca) which

themselves depend on the range of the treated potential [29]. Also, the total cell-event rates typically
get larger for smaller cell sizes. At the same time, the size of the cells should be not too large so that
the number of nearby and surplus particles stays small. For an optimal cell size, these two effects
must be balanced out. The cell-veto algorithm increases the needed memory and the cell-event rates
have to be computed in advance of the ECMC simulation. The latter can be, depending on the factor
potential, a time-consuming task itself but has to be done only once per cell-occupancy system and
factor type TM . During the ECMC simulation, the cell-occupancy system must be updated also after
events which are not cell-veto events.

2.7 Event-Chain Monte Carlo Simulation of the Hard-Sphere Model

The previous sections introduced the mathematical formulation of ECMC and also explained the
implementation of an ECMC simulation. The first basic ingredient is the factorized Metropolis filter
which formulates a consensus principle of factors. A proposed configuration in the Markov chain is
accepted or rejected independently by all factors. The lifting framework augments the configurations
by marking particles as active. The active particles uniquely determine the proposed configurations.
This concept allows to move the active particles persistently with a velocity v̂x . For infinitesimal time
steps, it was shown that ECMC satisfies maximal global balance for continuous distance-dependent
interactions if lifting moves are introduced. A lifting move changes the active particle when a factor
breaks consensus to another particle taking part in this factor, and therefore replaces the rejection of a
proposed configuration. The event-driven implementation overcomes the limitations of a time-driven
one by inverting the usual order of the simulation. Instead of first proposing a new configuration
and then checking if all factors accept it, the candidate event times at which consensus is broken are
sampled for each factor independently. The active particles are moved with their velocity for the
smallest candidate event time and the corresponding factor determines the lifting move. In order
to construct an ergodic Markov chain, the direction of the velocity needs to be resampled after the
cumulative sum of the actually traveled times equals a previously chosen chain duration TChain. The
cell-veto algorithm allows to sample the event with the smallest candidate event time and its factor for
a set of factors in O(1) operations, which finally reduces the overall complexity of ECMC.

To conclude this chapter, the presented ECMC algorithm will be applied to the hard-sphere model,
introduced in Section 2.2, in two dimensions. Here, a single hard disk is active at any time. Initially,
an augmented configuration is chosen, that is, the disks are placed in the system so that there are no
overlaps between them, and an active disk with a normalized velocity v̂ either parallel to the x- or the
y-axis is chosen randomly. Moreover, the chain duration TChain of the first event-chain is sampled
(in the most simple version, it is just chosen constant). The active disk is displaced straight along
its moving direction until it collides with another disk. The latter then becomes active itself and
is displaced in the same direction until the next collision with yet another disk. This procedure is
repeated until the cumulative sum of all traveled times equals TChain (see Fig. 2.6). After the end of
an event chain, a new active disk, a new direction of motion, and a new chain duration TChain are
sampled and the new event chain is started. Similarly, the configurations are sampled after a fixed
sampling duration. The ECMC simulation can be optimized by varying the distribution of TChain and
by implementing a cell-occupancy system to efficiently compute the collision distances of neighbored
disks [73].
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Figure 2.6: A single event chain of an ECMC simulation for N = 25 hard disks with radius σ (shown in blue)
at the packing fraction η = 0.35. The initially active disk (the most left gray disk) is displaced with velocity
v̂x along the positive x-axis for the time t1 = d1/|v̂x | until it collides with another disk. The latter becomes
active instead and is moved with the same velocity for the time t2 = d2/|v̂x | where it collides itself with another
disk. This procedure is repeated until the cumulative sum of the traveled times equals the chain duration,
TChain

= (d1 + d2 + d3 + d4)/|v̂x |. The initial positions of the disks which were moved during the event chain
are depicted as dotted circles.

As mentioned, ECMC simulations first determined the nature of the phase transition of hard
disks in 2011 [15]. In the liquid phase, both the positional and the orientational correlations decay
exponentially, whereas in the solid phase there is long-range orientational order and quasi-long-range
positional order (i.e., the positional correlations decay as a power law). It was shown that the transition
from the liquid to the solid phase in hard disks proceeds in two steps via an intermediate hexatic
phase. Here, the positional correlations decay exponentially but there is quasi-long-range orientational
order. The hexatic-solid transition is continuous while the liquid-hexatic transition is, in fact, a first
order phase transition. The latter was observed, among other phenomena, as a region of the packing
fractions where both phases coexist.
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CHAPTER 3

Architecture of the Application

The overall architecture of the JF application adopts the mediator design pattern [40]. The different
elements (Python classes) do not connect to each other directly but delegate their interaction to a
mediator. This design maximizes modularity, simplifies changes of the different elements and allows
for future extensions. The mediator also contains the main iteration loop over the legs of ECMC’s
continuous-time evolution of a piecewise non-interacting system, where each leg is interrupted by an
event (see Section 3.1). It is therefore the central element of the JF application and introduced at the
end of this chapter in Section 3.7. Beforehand, an introduction to the general purposes of the different
elements is followed by a discussion of their implementations and properties in the Sections 3.2–3.7.
In the event-driven implementation of ECMC, a non-active particle with identifier i is simply

described by its position ri . The time-dependent position ri(t) of an active particle is represented by a
time-sliced position ri(ti) at the time stamp ti and a velocity vi, i.e.,

ri(t) =

{
ri if vi = 0 (non-active particle),
ri(ti) + (t − ti)vi else (active particle).

(3.1)

In JF, the global state contains all information of Eq. (3.1) and is stored in the state handler (see
Section 3.2). The global physical state stores the time-sliced position ri of all particles whereas the
global lifting state stores the time stamps and velocities of only the active particles.
The event times ∆tEvent for factors involving an active particle, introduced in Section 2.5, are

computed with respect to its time stamp. JF introduces a total simulation time. An event taking
place at tEvent time-slices the active particle, that is, the time stamp is updated as ti → tEvent and the
position as ri(ti) → ri(t

Event
) = ri(ti) + (t

Event
− ti) vi; hence, ∆tEvent

= tEvent
− ti. A lifting move

transfers the velocity and the time stamp from the active to a non-active particle participating in the
vetoing factor (where the non-active particle is determined by using the lifting probabilities introduced
in Section 2.4). ECMC requires time-slicing only for particles whose velocity change. However,
JF-V1.0 also performs time-slicing after unconfirmed events although the out-state continues the
non-interacting continuous-time evolution of the in-state for the sake of simplicity and consistency in
the main iteration loop of ECMC (this is going to be discussed in detail in Section 3.7).

Events in JF consist of a candidate event time and an out-state. An event is computed based on an
in-state in the event handlers (see Section 3.3). For a factor M with the index set IM containing a
single active particle a ∈ IM , the in-state consists of the global physical state of all particles in IM
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Figure 3.1: The ECMC algorithm implements the time evolution of a piecewise non-interacting system. For
each leg, all relevant factors determine a candidate event time at which it breaks consensus, that is, at which
time the factor does not accept the continuation of the non-interacting time evolution. The out-state of the
event of the factor with the earliest event time determines the time evolution of the next leg. (For example, the
leg Ea → Eb is terminated by the event of the factor a2.) In JF-V1.0, at the end of each leg candidate events
with certain tags have to be trashed (tags t_1 and t_3 at Eb) while others are maintained (tags t_2 and t_4
at Eb). Also, new candidate events are activated, i.e., their candidate event time is computed (tags t_1, t_3
and t_5 at Eb). JF also introduces the concept of pseudo-factors. These complement the factors used in the
factorized Boltzmann distribution (and whose events are therefore needed for global balance) and allow to
formulate ECMC entirely in events. This figure has been published in [39] (see publication in Appendix B).

and the global lifting state of a. From this information, the candidate event time where M breaks
consensus and an event takes place is computed [see Eq. (2.70)]. (The in-state may contain more
information than that, as explained in Section 3.2. The factor configuration is just the minimum
content.) In the out-state, the particles are time-sliced and the velocity is transferred if necessary.

In order to sample the Boltzmann distribution, candidate event times for all factors involving a are
stored and compared in the scheduler of JF (see Section 3.4). Only the out-state of the event with the
smallest candidate event time is committed to the global state.

Factor events interrupt the time evolution of a piecewise non-interacting system so that the Boltzmann
distribution is sampled (see Fig. 3.1). JF introduces pseudo-factors which are independent of potentials
and have no incidence on the global-balance condition. An event of a pseudo-factor determines, e.g.,
the end of an event chain after the chain duration TChain with its candidate event time and specifies a
new velocity and active particle in its out-state. Also, events are created whenever an active particle
crosses a cell boundary of a cell-occupancy system to keep it consistent with the global state (see
Fig. 3.2). Even the start and the end of a run are formulated as events of pseudo-factors.
After the out-state of an event was committed to the global state, some candidate events become

invalid while others remain valid. A change of an active particle, e.g., requires the novel computation
of events for all factors including the new active particle. The events for the old active particle should
be trashed in the scheduler. The event for the end of the run, however, remains valid and has to be
maintained. The activator (see Section 3.5) is responsible for the maintain/trash decision of events
stored in the scheduler, as well as for the identification of event handlers which need to compute new
events. It also determines the particle identifiers of the in-state needed by the respective event handlers
to compute their event. For this, it may use internal states, e.g., a cell-occupancy system.

32



Figure 3.2: Factors and pseudo-factors in the JF application. (a): In- and out-state of an event of a factor
involving three particles. The in-state contains two active particles that are time-sliced at times t1 and t2,
respectively. In the out-state, a lifting move was carried out and all particles are time-sliced at the event time
tEvent. (b): In- and out-state of an event of a pseudo-factor. The active particle, time-sliced at t1 in the in-state, is
time-sliced at tEvent in the out-state. Here, the active particle is placed on the next cell boundary in its direction
of motion. A modified version of this figure has been published in [39] (see publication in Appendix B).

The input-output handler breaks up into a single input handler and possibly several output handlers
(see Section 3.6). The former is responsible for the initialization of the global state, for example, by
reading it from a file or creating it randomly. The output handlers create output during the run of the
application. Examples include the sample values of observables or even a complete state of the run.
The output handlers are run after certain events of pseudo-factors.

The factors and pseudo-factors of ECMC are statistically independent. The event handlers can
thus compute events in parallel in their own processes, which connect to the main process containing
the main iteration loop of ECMC in the mediator. After all candidate event times were sent to the
main process, the mediator requests the out-state from the event handler that created the event with
the smallest event time. Depending on the number of available processors, this out-state could have
already been computed in advance. (Imagine, e.g., two event handlers computing events on a sufficient
number of processors. The first event handler finishes the computation of the candidate event time
a long time before the second one. The mediator must wait for all candidate event times so that
the first event handler can already compute its out-state, whether or not it belongs to the event with
the shortest event time.) JF-V1.0 uses multiple processes instead of threads because of the Python
global interpreter lock. The data exchange between the different processes results in a currently slower
multi-process version of the application than the single-process implementation. Nevertheless, the
underlying idea of treating the independent factors and pseudo-factors in parallel seems important
enough that the multi-process version remains a part of the application and this thesis (see Section 3.7).
ECMC is valid for nac > 1 independent active particles. In a single process, each active particle

leads to events sortable by their event times. Sequentially committing these events to the global state
(followed by trashing/maintaining events and the computation of new events) yields a correct algorithm
if lifting moves to already active particles are rejected. A parallel version of ECMC for a small number
of independent active particles, 1 � nac � N , aims to commit npr events of different active particles
at once to the shared global state. Here, conflicts arise if the result disagrees with the single-process
version. As a possible solution, each active particle suggests a set of events (computed in parallel)
with candidate event times smaller than a global time lock, which is chosen so that the number of
conflicts remains small. Also, nearby active particles, which create conflicts with a higher probability,
are treated together. Conflicts are resolved centrally and the remaining events are committed to the
global state. The implementation of these ideas is one of the main challenges for future versions of JF.
The remaining part of this thesis assumes nac = 1 which is the only case fully implemented in JF-V1.0
(and also the choice of most ECMC applications so far).
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Figure 3.3: The architecture of the JF application is built on the mediator design pattern. The mediator contains
the main iteration loop of ECMC over the legs of a non-interacting continuous-time evolution which takes the
simulated system from one event to the next (for example, from event Ea to Eb in Fig. 3.1). This happens in the
shown nine steps. During these, the different elements of JF do not connect to each other directly but only via
the mediator. In the multi-process version of the application, the event handlers have their own iteration loop in
a separate process which then interacts with the main process of the mediator. This figure has been published
in [39] (see publication in Appendix B).

3.1 Main Iteration Loop of Event-Chain Monte Carlo

The mediator exists in two versions: The SingleProcessMediator class runs the application in a
single process whereas the MultiProcessMediator class communicates with event handlers that
have their own autonomous iteration loop in their own separate process. Both implement the run
method which contains an iteration loop over the legs of the continuous-time evolution of ECMC.
Here, both versions share the same conceptual stages. The run method is called at the beginning of
the simulation by the executable run.py script of the JF application (see Section 5.2).

To get from one event to the next during one leg, the mediator goes through nine stages (see Fig. 3.3).
In step 1, the active global state (that is, the part of the global state that appears in the global lifting
state) is extracted from the state handler. This information is sent to the activator which can then
return the event handler and the corresponding in-state identifiers to the mediator in step 2. The
identifiers are transformed into in-states using the state handler in step 3. In step 4, the candidate
event times are requested from the event handlers which were returned by the activator earlier (the
request is accompanied by the corresponding in-states). Returned candidate event times are pushed
into the scheduler so that, in step 5, the shortest event time can be received from the scheduler. In step
6, the out-state is obtained from the event handler responsible for the event with the shortest event
time, which is then committed to the global state in the state handler in step 7. In step 8, the activator
determines the events that should be trashed in the scheduler given the latest committed event. In the
final (optional) step 9, output handlers in the input-output handler are run so that, e.g., an observable
is sampled. This step is only executed after events of certain event handlers have been committed.

Before the implementation of these steps in the two versions of the mediator can be understood in
detail in Section 3.7, it is necessary to understand the different elements of JF and how they perform
their actions.
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3.2 State Handler

The state handler of JF stores the global state which is split up into the global physical state and the
global lifting state. The communication with the mediator requires five public Python methods to be
implemented. This is enforced by the abstract StateHandler class. The concrete class inheriting
from this class has to overwrite the methods given below which makes sure that the mediator can use
this class as a state handler.1 Throughout this thesis, the methods of the different abstract classes are
given like they are defined in JF, that is, including the obligatory self argument and type hints2. The
abstract methods of the state handler and their actions are listed in the following:

1. initialize(self, global_state: Any) -> None:
Initializes the state handler with the given global state. This method is used at the beginning of
a run of the application before the start of the main iteration loop of ECMC. The argument is
created by the input handler. (This method returns nothing which is specified by the return type
None.)

2. extract_global_state(self) -> Any:
Extracts the full global state so that it can be sent to an output handler which uses it, e.g., to
sample an observable (called in step 9 in Fig. 3.3).

3. extract_active_global_state(self) -> Any:
Extracts the part of the global state which appears in the global lifting state (called in step 1
in Fig. 3.3). The output of this method is sent to the activator via the mediator so that it can
identify event handlers which need to compute new events.

4. extract_from_global_state(self, identifier: Any) -> Any:
Extracts the part of the global state that corresponds to the given identifier (called in step 3 in
Fig. 3.3). This method gets called by the mediator to convert the in-state identifiers received
from the activator into in-states which are then sent to the event handlers.

5. insert_into_global_state(self, extracted_global_state: Any) -> None:
Inserts the extracted part of the global state (with changed data) into the stored global state
(called in step 7 in Fig. 3.3). This method commits the out-state of an event to the global state.

The return type Any of the extraction methods 2.–4. expresses that the inheriting class determines
not only the objects used within the state handler to store the global state, but also which objects
are used to broadcast parts of it. Other elements of JF must be able to handle the data format
(e.g., an event handler must be able to compute a candidate event time based on the object(s) the
extract_from_global_state method returned). The specific implementation of the state handler
similarly determines the possible identifiers that can be arguments of method 4.
The event handlers modify the part of the global state they received. They transform the in-state

into the out-state which gets an argument of the insert_into_global_state method. The output

1 Since Python is a dynamically-typed language and also uses duck typing, it is possible to use any class as the state handler
in the mediator. However, if the given methods are not defined, an exception will be thrown. The abstract class is thus
only a way of broadcasting the methods one needs to define.

2 Type hints were introduced in PEP 484.
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handler and the activator, in contrast, just read the data they received via the mediator from the
methods 2. and 3., respectively. Hence, only the extract_from_global_state method must copy
data stored in the global state (this requires much less copying of data than copying the full global
state because an in-state only consists of a small part of the global state).

JF-V1.0 uses a tree state handler which introduces the concept of composite point objects and point
masses. The latter correspond to the particles interacting via the factor potentials and whose positions
are sampled corresponding to the Boltzmann distribution using the ECMC algorithm. The former
represent barycenters of certain collections of point masses (say, molecules and parts of molecules).
For example, two oppositely charged point masses could be connected to a single composite point
object which then describes the barycenter of the dipole formed by the two point masses.

Composite point objects and their point masses are connected by storing them in a tree described by
nodes. Each node stores its unique parent node (if there is one) and a (possibly empty) list of child
nodes. Moreover, each node contains a Particle object which stores its time-sliced position. Point
masses, which are stored on the leaf nodes of the tree, can additionally have charges stored in a map (a
Python dictionary) from the charge’s name onto the corresponding value. A tree may have an arbitrary
number of levels. The tree’s inner nodes then describe the barycenter of parts of the molecule, and
the root node that of the entire molecule. Several composite point objects are stored in the tree state
handler by storing their root nodes in a list. This list therefore stores the entire global physical state.

The unique identifier of a certain composite point object or point mass is given by a tuple containing
a variable number of integers. The first entry of the tuple determines the relevant root node. The
(optional) following integers repeatedly refer to a node in the lists of child nodes and traverse down the
tree of the root node. The length of the identifier tuple thus corresponds to the level of the node within
its tree. The global lifting state is stored using these identifiers. Here, a map from the identifier of
each active composite point object or point mass onto its velocity and time stamp is established. (The
global lifting state is not stored within the trees because the number of nodes with non-zero velocity is
typically small in ECMC.) The velocities inside a composite point object are kept consistent. This
means that a moving point mass induces a movement of the composite point object it belongs to (with
a velocity equal to the arithmetic mean of the velocities of all its children). The global lifting state
therefore stores independent and induced velocities (see Fig. 3.4a–b).

Introducing composite point objects allows for collective motions of entire composite point objects
in a straightforward way (see the simulation in Section 6.2.4). Furthermore, internal states (which are
kept in the activator) may refer to positions of composite point objects and not only to positions of
point masses. A cell-occupancy system can, for example, map identifiers of non-leaf nodes onto the
cells their position belongs to (see Fig. 3.4c). By this, the cell-veto algorithm is implementable for an
effective interaction between composite point objects. Assume, e.g., that the cell-occupancy system
tracks barycenters of dipoles. It is possible to use this in order to set up the cell-veto algorithm for
the effective Coulomb interaction between the dipoles, which consists of the sum of the Coulomb
potentials between the point masses in different dipoles (see the simulation in Section 6.2.3).
The tree state handler combines the information of the global physical and lifting state into units

to communicate with the other elements of JF via the mediator. A unit stores all information of a
composite point object or point mass, that is, the identifier, position, charge, velocity, and time stamp.
During its construction, the position and the velocity are only optionally copied. All other elements
can access units or even modify them (for units which copied the data of the global state). The stored
identifier of a unit allows to integrate them into the global state. Thus, units are a common packaging
format in JF-V1.0.
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Figure 3.4: Tree representation of composite point objects and point masses in JF-V1.0. (a): Different parts
of a molecule consisting of several atoms (shown as solid spheres in different colors which indicate a charge)
can be combined and described by the barycenters of the atoms belonging to the parts (shown as the green
dotted and dashed lines/circles). (b): The tree state handler of JF-V1.0 stores the atoms as point masses, and the
barycenters of parts of the molecule as composite point objects and connects them in a tree. Each node in the
tree stores a position and, for the leaf nodes which correspond to the point masses, a charge. Also, each node
has a unique identifier which can appear in the global lifting state that assigns a velocity and a time stamp to
the node. A velocity is either independent or induced. (c): Different cell-occupancy systems can store point
masses with a certain charge (left cell-occupancy system) or even composite point objects (right cell-occupancy
system). A modified version of this figure has been published in [39] (see publication in Appendix B).

As a design principle, event handlers keep the time-slicing of composite point objects and their point
masses consistent. The returned objects of the extract_from_global_state method (which are
the in-states of the event handlers) are thus branches of the trees stored in the state handler. A branch
of an identifier includes information about the corresponding node together with the ancestors and
descendants of the node. The method constructs a temporary copy of the immutable node structure of
the state handler where each node contains a unit with copied positions and velocities (see Fig. 3.5).
To distinguish nodes containing Particle objects, which never leave the tree state handler, and nodes
containing units, which are shared among the application, the latter will be called cnodes.

For the sake of consistency, the extract_active_global_state and extract_global_state
method also return branches. The former method constructs the minimal number of branches so
that all identifiers appearing in the global lifting state are represented. Each cnode in these branches
contains an active unit (a unit where the velocity is not None). The latter method simply constructs
branches of cnodes for each root node whereby the positions and velocities are not copied. Since
this method is called only rarely (in most simulations once per a unique sampling duration), the
construction of branches for the full global state does not have a great impact on the run-time of the
application (especially for the simulations presented in Chapter 6 where the global states are relatively
small). Nevertheless, future improvements of the tree state handler might modify the data format
returned by this method if there is an impact in later uses of the application.
In JF-V1.0, the tree state handler contains dynamic information (like the positions and velocities)

and static information in the form of the charges of the point masses. The charge maps are not copied
during the construction of the units, but they store a reference to the maps instead. Another possibility
would be to store the charges in a shared storage which can be accessed by all elements. The current
way is, however, more consistent as the charges are close to the other information of the point masses.

37



Chapter 3 Architecture of the Application

Figure 3.5: Storage of the composite point object presented in Fig. 3.4b in the tree state handler of JF-V1.0.
The global physical state is stored in a tree built of nodes. A node is connected to its parent and child nodes,
which implies a unique identifier of each node. Moreover, each node contains a Particle object that stores
the position of the node. For leaf nodes, which correspond to point masses, the Particle object can further
store a charge. The global lifting state stores a map from an identifier of a node containing an active point mass
or composite point object onto its velocity and time stamp. On a call of the extract_from_global_state
method, the tree state handler constructs a branch for the node corresponding to the identifier given as the
argument of the method. The branch also includes all ancestor and descendant nodes. Each node then contains
a unit which combines all information from the global physical and global lifting state. This figure has been
published in [39] (see publication in Appendix B).

The tree state handler is specifically implemented for simulations of particle systems. The methods
of the abstract state handler and their usage in the mediator are, however, not a subject to this restriction.
The simulation of, e.g., spin models requires a new state handler and a new input handler to initialize
it. Also, the physics of the model has to be implemented, i.e., the event handlers for appearing factors
and pseudo-factors, as well as output handlers to sample observables. (The activator of JF-V1.0 needs
only a limited amount of additions as discussed in Section 3.5). This shows that the modular design of
JF allows for a straightforward extension to other models.

3.3 Event Handler

During a run of the application, there is only a unique state handler as there is only a single global
state to manage. Similarly, there is only a unique scheduler, activator, input-output handler (which
contains, however, several output handlers) and mediator (see Fig. 3.3). This does not apply to the
event handlers. Usually, events of multiple factors and pseudo-factors have to be computed, which is
the responsibility of many different event handlers.
Event handlers that realize a single (pseudo-)factor receive the full in-state on a request of the

candidate event time. The in-state is stored internally and also used to compute the out-state of the
event. In contrast, event handlers that compute events for a set of (pseudo-)factors receive only the
part of the in-state which is needed to compute the candidate event time on a request thereof. That is
because the element of the set that triggers the event is not yet known at the time of the request. The
event handler may return supplementary arguments together with the candidate event time, which
are used by the mediator to construct the missing part of the in-state of the vetoing (pseudo-)factor
in the set (see Section 3.7). This part then accompanies the out-state request (see, for example, the
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discussion about the event handler in Section 4.1.4 that computes cell-veto events, which concern a
set of factors as discussed in Section 2.6).

The necessity to allow for both types of event handlers implies a comparably complex definition of
the two methods responsible for computing the candidate event time and the out-state of an event,
respectively, in the abstract EventHandler class:

1. send_event_time(self, *in_state: Sequence[Any])
-> Union[float, Tuple[float, Sequence[Any]]]:

Computes the candidate event time based on the optional in-state (called in step 4 in Fig. 3.3).
If there is one, the mediator will transmit it as a single sequence (the type of the members of the
sequence depends on the state handler). Returns either only the candidate event time or a tuple
additionally containing arguments in a sequence that are used by the mediator to construct the
arguments of the send_out_state method.

2. send_out_state(self, *args: Any) -> Any:
Computes and returns the out-state of the event (called in step 6 in Fig. 3.3). If the arguments
of the send_event_time method were only a part of the in-state, the remaining part is an
argument of this method.

The different event handlers implemented in JF-V1.0 are described in Chapter 4.

3.4 Scheduler

The scheduler keeps track of the candidate event times and their associated event handlers. For this,
the abstract Scheduler class enforces the implementation of three methods:

1. push_event(self, time: float, event_handler: EventHandler) -> None:
Stores the candidate event time computed by the given event handler (called in step 4 in Fig. 3.3).

2. get_succeeding_event(self) -> EventHandler:
Returns the event handler which computed the smallest candidate event time currently stored in
the scheduler (called in step 5 in Fig. 3.3). The returned event handler and its candidate event
time should not be trashed as the activator is responsible for determining events to trash.

3. trash_event(self, event_handler: EventHandler) -> None:
Trashes the candidate event time which was computed by the given event handler (called in step
8 in Fig. 3.3).

JF-V1.0 uses a heap scheduler, that is, the tuples of the candidate event times and the corresponding
event handlers are stored and sorted using a heap queue.3 Inserting a new element into a queue of
n elements is O(log2 n) and the event handler corresponding to the shortest candidate event time is
returned in O(1) [74]. The (not yet optimal) trashing of a certain event handler consists of traversing
the queue until it is found. Future versions will implement lazy deletion instead (i.e., rather than
searching through the queue, an already trashed event handler is discarded when it comes out of
the queue naturally within the call of the get_succeeding_event method). For the simulations
presented in Chapter 6, n does not get very large which implies that the scheduler does not have a
great impact on the performance of the application.
3 For this, the Python heapq module is used.
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3.5 Activator

At the beginning of each leg of the piecewise non-interacting time evolution of ECMC, the activator of
JF provides to the mediator the new event handlers that have to compute a candidate event time. (Note
that, according to the mediator design pattern, no data flows directly between the event handlers and the
activator, i.e., the activator does not call any methods of the event handlers. Nevertheless, the activator
initially obtains the references of the event handlers and manages them.) The activator also determines,
possibly with the help of internal states, the in-state identifiers for each of the returned event handlers.
These are, after converting them to in-states using the extract_from_global_state method of the
state handler, the arguments of the send_event_time method. Finally, the activator yields the event
handlers whose events should be trashed after the out-state of an event of a preceding event handler
has been committed to the global state. The abstract Activator class thus defines four methods:

1. initialize(self, extracted_global_state: Any) -> None:
Initializes the internal states of the activator using the given extracted global state (the type of
the argument depends on the state handler). The internal states should only use the identifiers of
the global state and not duplicate the data stored within the state handler. This method is used at
the beginning of a run of the application before the start of the main iteration loop of ECMC.

2. get_event_handlers_to_run(self, extracted_active_global_state: Any,
preceding_event_handler: EventHandler)

-> Mapping[EventHandler, Union[Sequence[Any], None]]:
Returns a map from all event handlers onto their in-state identifiers that have to compute
candidate events in the next iteration of the main iteration loop of ECMC (called in step 2 in
Fig. 3.3). The arguments consist of the part of the global state that appears in the global lifting
state (returned by the extract_active_global_state method of the state handler) and the
preceding event handler that committed an out-state to the global state. The in-state identifiers
should be a sequence of identifiers whose type depends on the used state handler. If the event
handler does not require an in-state, the corresponding identifier is None.

3. get_trashable_events(self, preceding_event_handler: EventHandler)
-> Sequence[EventHandler]:

Returns a sequence of event handlers that are passed to the trash_event method of the
scheduler in order to trash its candidate event time, given the preceding event handler that
committed an out-state to the global state (called in step 8 in Fig. 3.3). The preceding event
handler should be included in the returned sequence as the scheduler did not delete it when
determining it. By this, only the activator is responsible for trashing events.

4. get_info_internal_state(self, event_handler_asking: EventHandler,
identifier_in_internal_state: Any) -> Any:

Returns the global state identifier stored in an internal state that is associated with the given
internal state identifier. The type of the latter depends on the implementation of the relevant
internal state (called in step 6 in Fig. 3.3). The type of the returned identifier depends on
the used state handler. In JF-V1.0, this method is used to construct the missing part for the
out-state request of an event handler realizing a set of factors (e.g., the cell-veto event handler in
Section 4.1.4). The “asking” event handler then determines the relevant internal state.
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JF-V1.0 uses a tag activator with tags providing a finer distinction than the factor types TM (i.e., a
certain factor type can be treated by several event handlers with different tags). Event handlers and
their events are internally associated with tags using taggers. The tag activator’s operations depend on
the interdependence of these tags: The tag of the preceding event handler that committed an out-state
to the global state determines the tags of event handlers which compute candidate event times next.
Similarly, the event handlers whose events are trashed in the scheduler are determined (see Fig. 3.1).
Taggers are also responsible for the determination of the in-state identifiers of its event handlers.

A tagger receives, on initialization, a tag (if no tag is given, instead the name of the class is used),
a single instance of an event handler, and a number of desired event handlers. It then uses the
Python deepcopy method to create as many identical event-handler copies as needed. The in-state
identifiers for the send_event_time method of its event handlers are generated in the tagger’s
yield_identifiers_send_event_time method, which has the extracted active global state as the
only argument. (This method is called in the activator’s get_event_handlers_to_run method and
the argument extracted_active_global_state is passed through.) A tagger may use an internal
state to generate the in-state identifiers. This associates, at the same time, an event handler with an
internal state, which is used for the implementation of the get_info_internal_state method.

The number of event handlers inside a tagger should meet the maximum number of events associated
to the tagger’s tag simultaneously stored in the scheduler. That is because the corresponding event
handlers might need to compute the out-state of a stored event and can thus not compute new events.
Note that event handlers and their candidate events may be referred to by tags, although they do
not have a tag property (like the taggers). For the sake of completeness, all taggers implemented in
JF-V1.0 and a description of how they create the in-state identifiers are listed in the Appendix A.

On initialization, a tagger additionally receives a list of tags that it creates and trashes, respectively.
The lists of all taggers are used to construct the create and trash maps from taggers onto lists of taggers.
At the beginning of a run, the tag activator further establishes a map from the event handlers onto
their taggers. Also, it sets up an internal pool of event handlers that stores for each tagger which event
handlers are currently running (i.e., an event of it is stored in the scheduler) and not running. On a call of
the get_event_handlers_to_run method, the preceding event handler that committed an out-state
to the global state (given as an argument of the method) is first mapped onto the corresponding tagger.
Afterwards, the create map yields the taggers whose yield_identifiers_send_event_time
method is iterated. The tag activator then extracts a not-running event handler of the corresponding
tagger for each of the generated in-state identifiers in order to construct the return value. Here,
all returned event handlers become running in the internal pool of the tag activator. A call of the
get_trashable_events method is answered by returning all running event handlers of taggers that
appear in the trashing map of the tagger corresponding to the preceding event handler. Here, all
returned event handlers become not-running again (see Fig. 3.6).
For the very first call of the get_event_handlers_to_run method in a run of the application,

no preceding event handler can be provided because no event handler committed an out-state to the
global state yet. Hence, the tag activator initially returns a start-of-run event handler (together with
the in-state identifiers generated by its tagger). This is an event handler that inherits from the abstract
StartOfRunEventHandler class (see Section 4.2.4).
The concept of creating certain taggers can be overruled by the concept of deactivated taggers.

These do not generate any in-state identifiers and thus, its event handlers are never returned in the
get_event_handlers_to_run method. At the beginning of the same method, taggers get activated
and deactivated based on tag lists which were set on initialization of the taggers.
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Figure 3.6: Interaction of the mediator with the tag activator of JF-V1.0. The tag activator consists of three
parts: The taggers associate event handlers and their events with a tag and generate in-state identifiers for its
event handlers. The interdependence of tags yields the relevant taggers used in the methods of the tag activator.
In order to generate the in-state identifiers, furthermore internal states can be used. Finally, the tag activator
manages a pool of event handlers. Event handlers are either running, that is, an event of them is stored in the
scheduler, or not running. Only not-running event handlers can compute new events and only running event
handlers can be trashed. This figure has been published in [39] (see publication in Appendix B).

It is noteworthy that, since the generation of the in-state identifiers of event handlers based on the
active global state is delegated to the taggers, the tag activator can be used with any state handler. A
new state handler, for example treating spin models, requires only the implementation of new taggers.
For this, the abstract Tagger class is designed so that the inheriting class usually only needs to
implement the yield_identifiers_send_event_time method (besides the obligatory __init__
method). Other properties of a tagger, e.g., how to activate and deactivate a tagger, are already
implemented in the abstract class. Also, a new state handler leads to new internal states. The internal
states currently implemented in JF-V1.0 for the tree state handler are described in the following.

3.5.1 Internal State — Cell-Occupancy System

The activator of JF may contain internal states that support the determination of in-state identifiers
for event handlers which should compute candidate events next. Such internal states are initialized
at the beginning of the run of the application with the extracted full global state returned by the
extract_global_state method of the state handler (see the initialize method of the activator).
However, they should not double up on the information available in the state handler. This means that,
for the case of the tree state handler, the internal states do not store the positions of point masses or
composite objects again but rather contain additional information about them.

In JF-V1.0, the internal states consist of cell-occupancy systems. These are specifically implemented
for the tree state handler and associate identifiers of point masses or composite point objects to
cells. Cell-occupancy systems are typically used for two things: On the one hand, they allow for
book-keeping, e.g., the efficient determination of point masses within a certain distance of a given
active point mass. On the other hand, they can be used for cell-based bounding potentials [see
Eq. (2.73)].
Each cell-occupancy system is associated with a cell system that inherits from the abstract Cells

class. Cell systems consist in a regular grid of cells whereby each cell is referred to by a unique
identifier. These identifiers are iterable via the yield_cellsmethod. Each cell possesses a lower and
upper bound position in each direction accessible via the cell_min and cell_max methods. Hence,
a position can be uniquely associated to a cell using the position_to_cell method. The lifting
framework used in ECMC often requires to determine a successor cell of a given cell in a certain
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Figure 3.7: Methods of the cell systems of JF-V1.0. (a): The abstract Cells class introduces a unique cell
identifier for each cell. For a given cell c, the cell system gives access to the lower and upper bound positions in
this cell via the cell_min and cell_max methods, respectively. The successor method returns the successor
cell in the horizontal, indexed by 0, and vertical direction, indexed by 1, respectively. On initialization, each
cell can furthermore define a set of excluded cells that are returned by the excluded_cells method. In this
figure, the neighbored cells of c are excluded. (b): The abstract PeriodicCells class additionally assumes
periodic boundary conditions and translational invariance. The periodic-cell system’s origin is given by the
zero_cell property. The relative_cell determines the relative blue cell that has the same cell separation
with the zero_cell as the cells a and b. (The two blue cells are identical due to the periodic boundaries). The
translate method returns the red cell which has the same distance to a as the cell b to the zero_cell. This
figure has been published in [39] (see publication in Appendix B).

direction. This is implemented in the successor method. (As the event handlers of JF-V1.0 are only
implemented for velocities parallel to one of the Cartesian coordinate axes, see Chapter 4, the same
restriction appears in this method.) Finally, it might be necessary to define a set of excluded cells for
each cell that is returned by the excluded_cells method (this appears, for example, in the cell-veto
algorithm in Section 2.6 where neighbored cells of the active cell were excluded). The excluded cells
should be set on initialization of the inheriting class (see Fig. 3.7a).
The abstract PeriodicCells class (which itself inherits from the Cells class) enhances the cell

system to a periodic and translational invariant cell system. The zero_cell property corresponds to
the cell located at the origin of the coordinate system. The relative_cell method receives a cell
and reference cell and returns a relative cell. Here, the method established an equivalence between the
pair consisting of the origin and relative cell and the pair of cells that appeared in the argument of the
method. The opposite of this is the translate method (see Fig. 3.7b).

JF-V1.0 implements periodic cuboid cells which receive, on initialization, three arguments: first,
the number of cells per coordinate axis that, together with the system size, determines the size of a
single cuboid cell; second, the origin of the cell system (i.e., the minimum corner of the zero_cell);
and third, the number of neighbor layers that should be excluded for each cell, i.e., the number of
cells excluded in each direction of a given cell. This information is enough to properly implement all
methods of the abstract PeriodicCells class, whereby it simply references each cell by an integer.
The described cell systems are used by cell-occupancy systems. In JF-V1.0, each cell-occupancy

system also has a cell_level property. This determines the length of the global state identifiers of
the tree state handler (which are tuples of integers) that are actually mapped onto the given cell system.
By this, both the identifiers of point masses and composite point objects may be considered. The
cell_level property introduces, however, the restriction that the identifiers, which should actually
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Figure 3.8: A cell-occupancy system which serves as an internal state of the activator. The cell-occupancy
system associates global state identifiers of units of a certain length to a cell of an underlying cell system. Only
a single unit’s identifier is stored as an occupant per cell. Identifiers of surplus units are accounted for differently
and can be iterated over. The same is true for identifiers of active units and their active cells. A modified version
of this figure has been published in [39] (see publication in Appendix B).

be stored by the cell-occupancy system, must have the same length. For the example of mapping point
masses onto the corresponding cells, the cell-occupancy system can thus only be used for global states
where each tree in the tree state handler has the same height (i.e., the same number of levels).

As mentioned, the cell-occupancy system receives the full global state before the main iteration
loop of ECMC is entered. The type of the global state depends on the state handler. For the case of
the tree state handler, it is given by a sequence of branches of all root cnodes. The cell-occupancy
system then only stores identifiers of relevant units, that is, the ones with the correct length. Each cell
of the underlying cell system is associated to a single identifier for which the corresponding unit’s
position lies within the cell (accessible via the __getitem__ method). Of course, there can be more
than one relevant unit within a certain cell. Such additional occupants are stored as surplus identifiers
and should be generated by the yield_surplus method. Finally, relevant units of the cell-occupancy
system may be active. These are extracted from both the stored occupant and surplus storages. Instead,
the identifiers of relevant active units are generated together with the corresponding active cells by the
yield_active_cells method (see Fig. 3.8).

The discussed methods are used by taggers. For example, a tagger can easily generate in-state identi-
fiers for event handlers that realize surplus factors of the cell-veto algorithm using the yield_surplus
method and the identifier of a single active unit. Similarly, using the excluded_cells of the under-
lying cell system, in-state identifiers for event handlers realizing excluded factors can be generated.
More taggers using a cell-occupancy system are explained in the aforementioned Appendix A.

The cell-occupancy system stored in the activator and the global state stored in the state handler have
to be kept consistent. This means that the time-sliced position r(ti) and the time-dependent position
r(t) of an active unit in Eq. (3.1) belong to the same cell. The tag activator achieves this by calling the
updatemethod of the cell-occupancy system at the beginning of the get_event_handlers_to_run
method with the extracted active global state as the only argument. A pseudo-factor triggers a
cell-boundary event if the active relevant unit of the cell-occupancy system crosses a cell boundary.
In the out-state of this event, the active unit has the minimal position within the successor cell in its
direction of motion (see Section 4.2.1). By this, the corresponding active cell is properly updated.
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JF-V1.0 implements the SingleActiveCellOccupancy class. Here, only a single relevant unit
and its active cell are kept within its private properties. The occupant identifiers are stored as a list
where each member corresponds to a single cell. An internal Python dictionary furthermore maps
from the cell identifiers onto the surplus identifiers. In the update method, the class first checks if
the stored active unit identifier is still active. If not, it is inserted either into the occupant list or into
the surplus map. Afterwards, the new active unit identifier is extracted from the internal storage of
occupants and surplus identifiers. If the active unit identifier remained the same, just the active cell is
recomputed.
It is noteworthy that the SingleActiveCellOccupancy class can further decide if identifiers

of units are stored based on charges. For this, a charge name may be set on initialization. The
cell-occupancy system then only stores identifiers of units with both the correct length and a non-zero
charge of the corresponding name. Also, a single run of the application can feature several different
instances of this class, whereby each instance can rely on different cell systems and consider different
charges and identifier lengths (see Fig. 3.4c). Each cell-occupancy systems that stores an active unit
requires the creation of separate cell-boundary events.

3.6 Input-Output Handler

The input-output handler decomposes into a single obligatory input handler and several optional output
handlers. Both are defined by an abstract class so that the input-output handler can use them properly.

3.6.1 Input Handler

The input handler is responsible for the initialization of the global state in the state handler. For this,
the abstract InputHandler class defines a single method:

1. read(self) -> Any:
Creates the initial global state that is passed, via the mediator, to the initialize method of
the state handler. The returned object(s) should be suited for the respective state handler. This
method is called by the input-output handler in an equally named method which itself gets called
at the beginning of a run of the application before the start of the main iteration loop of ECMC.

JF-V1.0 implements two input handlers for the tree state handler. Both of these only initialize the
global physical state (that is, the positions and charges that are stored in a list of trees) but not the
global lifting state. The initial event chain is instead started via the out-state of the start-of-run event
handler (see Section 4.2.4).
The first input handler reads the initial global physical state out of a file in the Protein Data Bank

(pdb) file format [75]. The pdb file is parsed by the Python MDAnalysis package [76, 77]. (This
package is not a part of the Python standard library. Note, however, that this package only has to be
installed when this input handler is used.) The second input handler creates a random initial global
physical state for the simulations discussed in Chapter 6.

Both input handlers only allow to create a global physical state of N similar composite point objects
of height at most two. Thus, every root node (representing composite point objects) has the same
number of children that represent point masses. By this, the charges of the point masses are simply
initialized by setting them only for the point masses within a single composite point object. The input
handlers then assume the same charges for the point masses within all composite point objects.
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3.6.2 Output Handler

Every output handler is associated to a file whose name is set on initialization and in which output
of a run of the application is created. The output handlers serve many purposes and the abstract
OutputHandler defines a single very general method:

1. write(self, *args: Any) -> None:
Creates output using the given arguments. This method is called, via the input-output handler,
after certain events of pseudo-factors have been committed to the global state (called in step
9 in Fig. 3.3). The argument of the method depends on the event handler that realized the
pseudo-factor (see Section 3.7).

Most output handlers are run after an event of a sampling pseudo-factor (see Section 4.2.2). For
these cases, the argument of the write method consists of the extracted full global state returned by
the extract_global_state method of the state handler. The output handler then usually samples
an observable using this data. This implies that such output handlers are specifically implemented for
the composite point objects and point masses that appear in the tree state handler in the given run, and
also for the desired observable. Another possibility consists in sampling the entire global physical
state and extracting the wanted observables using a separate program. JF-V1.0 implements output
handlers for both cases: The observables in the simulations in Chapter 6 are computed in different
output handlers. (Here, the observables are separations between certain point masses in different
composite point objects.) Another output handler creates a pdb file that contains the entire global
physical state, again using the Python MDAnalysis package.
The dumping output handler of JF-V1.0 is used after an event of a corresponding pseudo-factor

(see Section 4.2.2). Then, the argument of the write method is the mediator object itself. This allows
to store the state of an entire run of the application (following the principle of a core/memory dump)
because the mediator contains references to all elements of the JF application. All Python objects
of the application are serialized and written into a file together with the state of the random module.
For this, the Python dill package is used [78, 79]. (Again, the Python dill package only has to be
installed if this output handler is used). With the help of the created file, the run of the application
can be restarted at the state where the output handler was used (which also includes that exactly the
same random numbers are drawn in the following). This proves useful for debugging purposes (see
Section 5.2).

3.7 Mediator

The single- and multi-process versions of the mediator both contain the main iteration loop of ECMC
described in Section 3.1 in their run method. For the single-process version, the mediator just calls
the introduced public methods of the different elements of JF. A special communication is needed
for event handlers that treat a set of (pseudo-)factors. As discussed, these may return additional
objects besides the candidate event time in their send_event_time method, which should be used
to construct the arguments of the send_out_state method. Some of these event handlers do not
even return any additional objects but need arguments in their send_out_state method nevertheless.
The mediator design pattern solves this by defining a “get-arguments” method for each class of event
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handlers that requires this special treatment.4 (The get-arguments method may also be defined for an
abstract event handler class. If such a method is not implemented for a given class, the method of
the base class is used, if it exists.) If a get-arguments methods is implemented for the class of the
event handler that should compute an out-state, it is executed with the additional objects returned
during the event-time request as the arguments. The returned objects of the get-arguments method
then accompany the out-state request.
The same pattern is used to optionally run output handlers in the input-output handler in the final

step 9 of the main iteration loop of ECMC (see Section 3.1 and Fig. 3.3). A “mediating” method
is defined for certain classes of event handlers that received, on initialization, a name of an output
handler (see Section 4.2.2). This method specifies to the input-output handler the relevant output
handler and the arguments of the write method after an out-state of a corresponding event handler
class has been committed to the global state. Both the get-arguments and the mediating methods are
implemented in a shared abstract class of the single- and multi-process versions of the mediator.

The multi-process version requires a special communication with the event handlers, which should
run their own autonomous iteration loop in a separate process. JF-V1.0 uses, nevertheless, the same
event-handler classes for the two versions of the mediator. This is achieved by a monkey-patching
technique. The mediator dynamically adds a run_in_processmethod to each event-handler instance
in a run of the application. This method contains an iteration loop, which is started in a separate
process, that reacts to shared flags set by the mediator. Moreover, the send_event_time and the
send_out_state methods are decorated so that the return values are rather transmitted through a
two-way pipe that connects the event-handler process to the main process. Likewise, arguments of
the methods are transmitted from the mediator to the event handlers through the pipe. Here, it is
important that only the mediator accesses the methods of the event handlers (according to the mediator
design pattern). Thus, the redefinitions of methods, which abolish the need for two versions of each
event-handler class, do not produce undesired side effects.
For each event handler, the same pipe is used to receive the candidate event time and the out-

state. Hence, the multi-process mediator assigns four different stages to the event handlers (idle,
event_time_started, suspended, out_state_started) in order to distinguish the received
objects. Also, the assigned stage determines the flags the mediator can set to either start the
send_event_time or the send_out_state method. In the idle stage, the mediator can only set
the starting flag. The event handler then waits for the in-state to be transmitted through the pipe. After
it was put into the pipe by the mediator, the stage is changed to event_time_started at the end
of which the event handler places the candidate event time into the pipe. When the mediator has
recovered the data, it changes the stage of the event handler to suspended. In this stage there are
two possibilities: Either the mediator sets again the starting flag which reverts the event handler to
the event_time_started stage, or it sets a continue flag that lets the event handler compute the
out-state and changes the stage to out_state_started. After the out-state was recovered from the
pipe, the event handler is returned to the idle stage (see Fig. 3.9).

The multi-process mediator adjusts the strategy for either suspending an event handler or letting it
start the computation of the out-state (before its actual request) to the number of available processors.
Here, the computation of event times of all event handlers always has a higher priority. This means
4 In order to not implement the analogue of a switch statement with extensive type checking of event handlers inside a
very long unique get-arguments method, the mediator of JF-V1.0 implements several of the get-arguments methods that
contain the class name of the event handlers in their names. At the beginning of a run, the mediator creates a Python
dictionary mapping from the existing event handlers onto its get-arguments method, if it is implemented.
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Figure 3.9: The multi-process mediator assigns stages to the event handlers that contain an autonomous iteration
loop in a separate process. The arguments and return values of the shown methods are transmitted via a two-way
pipe. The mediator can set different shared flags in order to start the computation of a candidate event time
or an out-state. The shown stages of the event handler allow the mediator to distinguish the objects received
via the pipes, and to determine which flags can currently be set. This figure has been published in [39] (see
publication in Appendix B).

that all available processors are first used to compute candidate event times. If processors become
free before all times are computed, they are used to compute out-states in advance. In JF-V1.0, the
communication via pipes presents a computational bottleneck and slows down the multi-process
mediator.
Both versions of the mediator run the main iteration loop of ECMC until an EndOfRun exception

is raised. In JF-V1.0, this takes place in the mediating method of the abstract end-of-run event
handler class (see Section 4.2.4). Thereafter, the post_runmethod of the mediator is executed, which
finalizes and closes files in the output handlers and terminates the event handler processes for the
multi-process version.
As mentioned, JF-V1.0 also performs time-slicing after unconfirmed events. This means that

out-states of events are committed to the global state even when the velocities stored in the global
lifting state do not change. This also results in the fact that a whole new iteration in the mediator is
started, which includes, in particular, the creation and trashing of events via the activator. Future
versions of JF will most probably introduce a smaller feedback loop for unconfirmed events. Here,
the event handler computes a candidate event time again if an event is not confirmed in its out-state
computation. The time is then directly put into the scheduler and the out-state of the event handler
that computed the now smallest candidate event time is requested (in Fig. 3.3, this corresponds to
going back from step 6 to step 4 for unconfirmed events).
The presented architecture of the JF application closely mirrors the mathematical formulation of

ECMC that was introduced in Section 2. Although the implementations of the current elements of
JF-V1.0 are aimed toward all-atom simulations, the definition of these elements is done in a general
way and allows for a straightforward extension to other models. The underlying ideas of the application
are, of course, not restricted to the Python language. Its popularity and simplicity, however, allows a
lot of possible users to understand and use JF, and also to extend it to their purposes.
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Event Handlers

The event handlers are an essential part of the JF application. They realize the factors and pseudo-
factors of ECMC and compute their events. Events of factors are required by ECMC because they
ensure that the flow into a configuration equals its Boltzmann weight. This is not true for events of
pseudo-factors that, however, permit JF to represent an entire run of the application in terms of events.

A given event handler does not directly correspond to a given (pseudo-)factor of ECMC because it
treats a variety of in-states. Thus, the identifiers of the in-state change for each event computed by an
event handler. In contrast, the index set of a (pseudo-)factor consists of a fixed set of identifiers. The
(pseudo-factor) that is realized in an event handler is therefore only determined after it received the
full in-state, and a certain event handler realizes several different (pseudo-)factors during a run of the
application. The type of the realized (pseudo-)factor, however, is fixed by the concrete implementation
of the send_event_time and send_out_state methods of an event handler (which uses, e.g., a
certain factor potential). It is the task of the activator of JF to determine, on the one hand, the
(pseudo-)factors for which an event has to be computed next, and on the other hand, the event handlers
that realize those. As discussed in Section 3.5, JF-V1.0 uses tags for both purposes and several tags
may treat a single type of (pseudo-)factors.
This chapter summarizes the event handlers implemented in JF-V1.0, and describes how they

implement their send_event_time and send_out_statemethods. Section 4.1 introduces the event
handlers realizing factors while Section 4.2 introduces the ones realizing pseudo-factors. In both cases,
the distinction between event handlers that treat a single (pseudo-)factor and those that treat a set of
(pseudo-)factors is crucial as they use a different communication with the mediator (see Section 3.3).
The discussed event handlers are used in the simulations of Chapter 6 and are all implemented for the
tree state handler (see Section 3.2). This implies that the in-states consist of cnode branches and that
the event handlers keep the time-slicing of composite point objects and their point masses consistent
in the constructed out-states. Moreover, all event handlers are implemented under consideration of
periodic boundary conditions (see Section 5.1).

4.1 Event Handlers for Factors

Event handlers for factors or sets of factors depend on a factor potential acting between several point
masses. In order to maximize reusability of the different event handlers, the potentials are not hard
coded into the event handlers but are separate elements of JF.
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4.1.1 Factor Potentials

In JF-V1.0, there are two kinds of factor potentials: The first kind is inverted, i.e., its event rate is
integrated in closed form along the straight line trajectory of the active point mass [see Eq. (2.70)].
The second kind is not inverted (either by choice or because it is not possible). Treating a non-inverted
factor potential in an event handler requires an inverted bounding potential, which is used to propose
an event time. The associated event is then confirmed or rejected during the computation of the
out-state [see the discussion after Eq. (2.72)].

All event handlers for factors in JF-V1.0 concern distance-dependent factor potentials between two
or more point masses, one of which is active. A lifting move after an event of the corresponding factor
transfers the velocity from the active to another non-active point mass taking part in the factor (see
Section 2.4). Factors with non-distance-dependent factor potentials have to invert the velocity during
a lifting move and require the implementation of new event handlers.
The potentials of JF-V1.0 are furthermore restricted to velocities of the active point mass that are

parallel to one of the Cartesian coordinate axes and in the positive direction, which is the usual choice
of ECMC. They only implement their partial derivatives (and similarly the integration of the event
rate) along the coordinate axes. It is then sufficient to specify the direction of motion of the active
point mass as an integer (e.g., direction=0 corresponds to the partial derivative with respect to
the x-coordinate of the active point mass). General velocities in arbitrary directions necessitate the
implementation of new potentials and new event handlers.
Non-inverted factor potentials only implement the derivative method (enforced by the abstract
Potential class) whose arguments are the separation vectors of the involved point masses, the active
point mass’s direction of motion, and optionally specific charges of all point masses. The method
returns the derivative with respect to the active point mass along its direction of motion evaluated at the
separation vector. From this, the event handler can determine the factor event rate. (Still, the method
returns the derivative because some event handlers require negative derivatives, see Section 4.1.5)
Inverted factor potentials additionally implement the displacement method. (This is enforced

by the abstract InvertiblePotential class that itself inherits from the Potential class.) This
method receives the same arguments as the derivative method, plus a sampled positive potential
change [see Eq. (2.69)]. It returns the displacement ηM of the active point mass after which the
integrated event rate along its straight line trajectory equals the given positive potential change.

The remaining part of this section lists all potentials between several point masses of JF-V1.0 and
shortly describes their implementations of the different methods. It is noteworthy that, in principle,
the presented potentials could be also used as an effective interaction between several composite point
objects, whereby one of these is active. However, none of the event handlers of JF-V1.0 implement
this and all potentials are therefore explained using the terminology of point masses.

4.1.1.1 Inverse-Power-Law Potential

The inverse-power-law potential concerns the separation vector ri j = rj − ri in d-dimensional space
between a non-active point mass j and an active point mass i. Thus, the corresponding pair factor
is M = ({i, j}, Inverse). The potential moreover depends on specific charges ci and cj of the point
masses,

U({i, j },Inverse)(ri j, ci, cj) = cicj kInverse

(
1
|ri j |

)pInverse

. (4.1)
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Here, kInverse and pInverse > 0 are parameters that are set on initialization of the potential class. The
implementation of the derivativemethod is straightforward by using the analytic form of the partial
derivative with respect to a single coordinate of the active particle’s position of Eq. (4.1).
The displacement method distinguishes between the repulsive (cicj kInverse > 0) and attractive

(cicj kInverse < 0) cases, respectively. For example, consider the attractive case and the separation
vector ri j = (xi j, yi j, zi j) in 3 dimensions. Let the velocity of the active point mass be aligned with the
x-axis and xi j > 0 initially. The potential then displaces i along the x-axis until the integrated event
rate equals the sampled positive potential change ∆U+. Displacing i until xi j = 0 contributes nothing
to the integral as the event rate is 0 for all xi j ≥ 0. Thereafter, it is important that Eq. (4.1) can be
algebraically inverted for |ri j |. The potential uses the inversion to compute the value of |rEvent

i j | where
the potential equals U({i, j },Inverse)(ri j = (0, yi j, zi j), ci, cj) + ∆U+. The integrated event rate is equal to
the sampled positive potential change at this separation rEvent

i j = (xEvent
i j , yi j, zi j) because the event rate

is greater than zero for all xi j < 0. From |rEvent
i j |, the potential can determine the value of xEvent

i j < 0
and finally return the displacement ηM = xi j + |x

Event
i j |. The repulsive case is treated similarly.

The given separation ri j may be between i and any periodic image of j. The separate-image
inverse-power-law potential just uses it in its computations without further considering the effect of
periodic boundary conditions (for example, the potential does not correct the separation toward the
minimum separation between i and the closest image of j). By this, different implementations of event
handlers can treat the set of interactions between i and several images of j separately.

4.1.1.2 Lennard-Jones Potential

Another separate-image potential of JF-V1.0 implements the Lennard-Jones potential that corresponds
to the pair factor M = ({i, j},LJ). However, this potential does not depend on charges of the involved
point masses,

U({i, j },LJ)(ri j) = kLJ


(
σLJ
|ri j |

)12

−

(
σLJ
|ri j |

)6 . (4.2)

Again, kLJ and σLJ are parameters of the potential that are set on initialization, and ri j is the separation
vector between the point masses whereby i is active. The Lennard-Jones potential class internally
uses two instances of the inverse-power-law potential class with accordingly chosen parameters. The
derivative method returns the sum of the derivatives of the two underlying potentials.
In contrast, the displacement method cannot use the underlying potentials as it requires the

distinction of more cases due to the minimum of the Lennard-Jones Potential at separations with the
norm rMin

i j = σLJ 21/6. Consider the initial separation ri j = (xi j, yi j, zi j) in 3 dimensions with xi j > 0
chosen so that |ri j | > rMin

i j , as well as yi j and zi j small enough so that |(0, yi j, zi j)| < rMin
i j . (Otherwise

the displacement can be computed analogously to the attractive case of the inverse-power-law potential.)
The velocity of the active point mass is again parallel to the x-axis. The event rate is zero for all values
of xi j > 0 where |ri j | > rMin

i j . Hence, the potential first changes xi j to the value where the minimum
of the potential is reached. Afterwards, the potential increases until xi j = 0 and the height of this
potential hill must be compared to the sampled positive potential change. If the latter is larger than
the potential hill, the potential decreases again until it reaches its minimum for some value xi j < 0,
followed by another increase. Both increasing parts of the potential are “climbed” until the cumulative
and the sampled positive potential changes are equal and the total displacement of i is returned.
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4.1.1.3 Displaced-Even-Power-Law Potential

The displaced-even-power-law potential is a separate-image potential that also depends on the separation
vector ri j in d-dimensional space between two point masses with i active, and is independent of any
charges,

U({i, j },DEPP)(ri j) = kDEPP

(
|ri j | − r0

)pDEPP
, (4.3)

where kDEPP > 0, pDEPP ∈ {2,4,6, . . .}, and r0 are parameters that are set on initialization of the
potential class. The corresponding pair factor is M = ({i, j},DEPP). Both the derivative and the
displacement methods are provided analytically, whereby the implementation of the latter does a
similar case distinction as the Lennard-Jones potential.

4.1.1.4 Merged-Image Coulomb Potential

The merged-image Coulomb pair potential approximates the sum of the separate-image Coulomb
pair potentials between the active point mass i and every periodic image of the non-active point
mass j using Ewald sums [80, 81]. These present a reliable technique to treat the long-range
Coulomb interaction without introducing inaccuracies by truncating the long-range part (which is
done, e.g., when considering only a finite amount of separate-image interactions). This potential is
explicitly implemented for the case of periodic boundary conditions. Moreover, this class is restricted
to simulations within a cubic box with side length L in three dimensions because JF-V1.0 only
implements the Ewald sums for this setting. (The other potentials of this section do not have this
restriction and can, for example, also be used in a hypercuboid simulation box in arbitrary dimensions.)

The merged-image Coulomb pair potential depends on the minimum separation vector ri j ,0 between
the active point mass i and the closest image of the non-active point mass j and, of course, on the
charges of the point masses (in appropriate units),

U({i, j }Coulomb)(ri j ,0, ci, cj) =
∑

n∈ Z3

cicj
|ri j ,0 + nL |

. (4.4)

The sum (which effectively sums over the periodic images of the non-active point mass) is only
conditionally convergent but can be consistently defined in terms of “tin-foil” boundary conditions
(that is, the system and all its periodic images are embedded in a medium with an infinite dielectric
constant). The idea of the Ewald sums is to screen each charge by a diffuse charge distribution of
the opposite sign. The total charge of this cloud exactly cancels the screened charge. This induces,
depending on the screening charge distribution, a rapid decay with growing distance of the single
charge’s electrostatic potential. Here, a Gaussian distribution is assumed for the screening charge
clouds. These are themselves compensated by a smoothly varying periodic charge density, which can
be represented by a rapidly converging Fourier series. This results in [7, 80, 81]

U({i, j }Coulomb)(ri j ,0, ci, cj) = cicj

[ ∑
n∈ Z3

erfc(α |ri j ,0 + nL |)

|ri j ,0 + nL |

+
4π
L3

∑
q,(0,0,0)

exp[−q2
/(4α2

)]

q2 cos(q · ri j ,0)

]
+USelf(α).

(4.5)
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Here, the Fourier-space sum is over q = 2πm/L with m ∈ Z3. The self-energy contribution USelf(α)

does not depend on any point masses’ positions and is thus irrelevant for the implementation of the
derivative method. The result of the potential is independent of the tuning parameter α > 0, which
however influences the convergence of the sums in Eq. (4.5).

The corresponding potential class in JF-V1.0 defines optimized default values for α and the spherical
cut-offs of the sums in real and Fourier space. By this, the derivative, which can be analytically
calculated from Eq. (4.5), reaches machine precision in the fastest way. (Usually, Ewald sums consider
several interacting charges and the optimal values depend on the number of them. Since ECMC
treats each Coulomb interaction between two charges separately, the optimal values must only be
determined once.) All parameters can be changed on initialization nevertheless. The potential class
further accelerates the summation over the Fourier-space components q , (0,0,0) in the derivative by
reducing it to a sum over non-negative components and computing the position-independent parts
(which especially include the exponentials) before the main iteration loop of ECMC is entered [7].

The merged-image Coulomb potential is not invertible and requires a bounding potential. JF-V1.0
provides a merged-image Coulomb bounding potential that depends on the minimum separation vector
ri j ,0 and the charges of the two point masses,

U({i, j },Bounding)(ri j ,0, ci, cj) = kBounding
cicj
|ri j ,0 |

. (4.6)

The bounding potential shares the singularity of the Coulomb potential at ri j ,0 = (0,0,0). However, it
should be noted that Eq. (4.6) does not involve any sum over periodic images. The implementation
of the displacement method requires, nevertheless, the consideration of periodic images of the
non-active point mass during the integration of the event rate along the straight-line trajectory of the
active point mass. The derivative method is again straightforward.

The constant kBounding is chosen as

kBounding = max
r∈[−L/2,L/2]3

|r|3

x
∂xU({i, j }Coulomb)(r,1,1), (4.7)

where r = (x, y, z), so that the Coulomb-potential event rate is bounded. Equation (4.7) can explicitly
regard the derivative with respect to x because the derivative of the Coulomb potential is symmetric.
The |r|3/x term cancels the inverse term that appears in the derivative of the Coulomb potential due to
the 1/|r| pole. A constant kBounding & 1.5836 is appropriate for a cubic simulation box.

4.1.1.5 Three-Body Bending Potential

The separate-image three-body bending potential concerns three point masses and the corresponding
factor is M = ({i, j, k},Bending). It depends on two separation vectors ri j and rjk in d-dimensional
space and is given by

U({i, j ,k },Bending)(ri j,rjk) =
1
2

kBending

(
φ{i, j ,k }(ri j,rjk) − φ0

)2
. (4.8)

Here, φ{i, j ,k }(ri j,rjk) denotes the internal angle between the two separation vectors. The constants
kBending and φ0 are set on initialization of the potential.
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The three-body bending potential has an important difference compared to the previously described
two-body potentials: The separation arguments are the same independently of which of the point
masses i, j, and k is active (whereas for the two-body potentials a change of the active point mass
induced a change of sign of the separation vector). That is because the bending potential typically
describes fluctuations of the bond angle within a water molecule (see the simulation in Section 6.3).

The derivative method is provided analytically and returns three derivatives where it assumed a
different active point mass in each returned value. However, this potential is not inverted and thus,
the displacement method is not implemented. In JF-V1.0, an event handler constructs a bounding
potential dynamically (see Section 4.1.5). This event handler then also extracts the correct derivative
from the list returned by the derivative method based on the currently active point mass. This
shows that there is, in general, a great freedom in the design of a factor potential. One just needs to
take care that the event handlers can handle them and extract the right information.

4.1.1.6 Cell-Based Bounding Potential

A cell-based bounding potential bounds the derivative of a factor potential inside certain cell regions by
constants. These are computed analytically or may be even sampled using a Monte Carlo approach in
the estimators of JF. These estimators are specifically designed for distance-dependent pair potentials,
which it receives on initialization. They then determine upper and lower bounds for the derivative in a
given direction of motion for separations inside a hypercuboid with given minimum and maximum
corners (within the derivative_bound method). Both upper and lower bounds are needed if the
factor potential additionally depends on a charge product of the involved point masses (as is the case,
e.g., for the merged-image Coulomb potential).

In general, an estimator just compares the derivatives of its potential for different separations within
the hypercuboid to obtain the upper and lower bounds. The maximum and minimum values of the
derivatives may additionally be corrected by a multiplicative prefactor. Optionally, an empirical bound
as an upper limit on the absolute values of the bounds (after the multiplication with the prefactor)
can be set. Both the prefactor and the empirical bound are set on initialization of the estimator. The
boundary-point and inner-point estimators of JF-V1.0 sample the separations evenly distributed on the
boundary of the given hypercuboid or within it, respectively.
Two additional estimators treat the interaction between a charged active point mass and two

oppositely charged target point masses that build a dipole with a fixed dipole separation (this implies
that these estimators can only be used with potentials that actually consider charges). The derivative
of the factor potential (which is typically the merged-image Coulomb potential) is summed for the two
possible active-target pairs. A Monte-Carlo estimator then distributes both the separation between the
active point mass and the dipole, as well as the dipole-orientation randomly. The dipole-inner-point
estimator distributes the separations evenly within the hypercuboid. The dipole orientation is aligned
along the direction of the derivative’s gradient for each separation. Both estimators are useful for
all-atom models where several point masses with compensating charges are combined to a composite
point object. A Coulomb interaction is then only present between point masses in different composite
point objects (see the simulations in Sections 6.2 and 6.3). Combining the Coulomb pair factors for
all point masses in two composite point objects to a larger factor yields factor event rates that decay
much faster with distance than the ones for Coulomb pair factors [7]. This is due to the fact that the
factor event rate is computed based on a sum of derivatives that compensate each other due to the
compensating charges within a composite point object.
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The cell-based bounding potential of JF-V1.0 is explicitly implemented for periodic boundary
conditions and stores piecewise cell-bounded derivatives for a specific periodic cell system (see
Section 3.5.1). (Note that only the activator has access to cell-occupancy systems. The underlying
cell systems, however, are used by other objects as well.) Before the main iteration loop of ECMC
starts, the cell-based potential iterates over all possible directions of motion and all non-excluded
relative cells of the underlying cell system’s zero_cell. Here, certain relative cells may be excluded
because, e.g., the cell-bounded event rate would diverge or be too large. The pair of cells determines
the minimum and maximum corners of the hypercuboid of possible separations that are handed to
the estimator, together with the considered direction of motion. The returned derivative bounds are
then stored internally for all possible relative cells and directions of motion (the lower bound is only
computed and stored if a charge should be considered). Only the relative cell is relevant because the
bounded factor potential just depends on the separations of the involved point masses.

The displacement method receives the direction of motion of the active point mass, the relative
cell, optionally the charges, and the sampled positive potential change. The appropriate constant
bound on the event rate is easily integrated to compute the displacement. Note that this displacement
might actually move the active point mass out of its cell. The cell-based bounding potential does
not take this into account. Rather, preempting cell-boundary events render this problem irrelevant
(see the discussion in the corresponding event handler in Section 4.1.3). The implementation of the
derivative method is straightforward as well as it can just use the stored bounds.
The determination of the cell-bounded event rates within the estimators of JF-V1.0 is appropriate

for the simulations in Chapter 6 where the number of relative cells remains small. For a large number
of relative cells, the estimation of the bounds would need a considerable time before the ECMC
simulation even starts. Then, more elaborate methods are required. For example, the cell-bounded
event rates can be computed analytically for certain potentials. Note also that the estimators compute
the bounds at the start of each run. Another possibility is to run the estimation once and to store the
bounds in a file, which is then read in at the beginning of the run by the cell-based bounding potential.
After the implementation of inverted and non-inverted distance-dependent factor potentials has

been covered, the event handlers using these are introduced in the following sections. As mentioned
before, all of these are specifically implemented for periodic boundary conditions.

4.1.2 Event Handler with an Inverted Factor Potential

The TwoLeafUnitEventHandler concerns distance-dependent inverted factor potentials between
a pair of point masses, which may additionally depend on specific charges of the involved point
masses.1 It thus realizes a single pair factor M = ({i, j},TM ), whereby the type TM is fixed by the
factor potential that is set on initialization. The index set {i, j} is, as mentioned, only fixed after an
in-state was received, inside of which only one of the point masses is independent active.

For this event handler, the in-state (which is given by branches of cnodes of the point masses i and
j) accompanies the call of the send_event_time method. The event handler first extracts the units
of the point masses i and j and determines the unique independent active unit i. The velocity v of the
latter yields the direction of motion. Next, an exponentially distributed random number is sampled
1 An event handler is initialized with a certain potential which may or may not expect charges. Also, the event handler may
or may not receive a name of a charge on initialization. On initialization, the event handler checks if the potential is
usable. If the name is not None but the potential does not expect charges, an exception is thrown. However, if the name is
None and the potential does expect charges, the event handler usually sets these to 1.
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[see Eq. (2.69)]. This, the minimum separation ri j ,0 of the two point masses, possibly the charges,
and the direction of motion of the active point mass build the arguments of the factor potential’s
displacement method. The factor potential returns the displacement ηM = |v|∆tM of the active
point mass after which an event takes place. From this, the event handler computes ∆tM and returns
the candidate event time tM = ti + ∆tM , using the time stamp ti of the active point mass.
The in-state time-sliced to the candidate event time tM (with positions corrected for periodic

boundaries) is stored internally for the subsequent call of the send_out_state method. This only
takes place if the candidate event time was actually the smallest. To construct the out-state, the velocity
and the time stamp of the independent active point mass i are transferred to the non-active point mass
j. The time-slicing of all composite point objects present in the branches of i and j are kept consistent.
The event handler explicitly computes the minimum separation ri j ,0 between the interacting point

masses under consideration of periodic boundary conditions. This is used in the factor potential which
is either separate- or merged-image. Treating a pair factor with a separate-image factor potential
only by event handlers of this type induces an approximation, as all images of the non-active point
mass except the closest one are neglected (which might be a reasonable approximation if the factor
potential decays quickly with growing separations). In order to treat other images, new event handlers,
which compute the separation accordingly, have to be implemented . This remark is valid for all event
handlers described in this chapter because all of them explicitly use the minimum separation vector.

4.1.3 Event Handlers with a Bounding Potential

The event handlers described in this section are used for distance-dependent factor potentials between
two point masses which do not provide a displacement method (or the method is ignored by choice).
Only the derivative method is implemented. Similar to the previous section, all the event handlers
realize a single pair factor M = ({i, j},TM ) including one independent active point mass.
The TwoLeafUnitBoundingPotentialEventHandler uses an inverted bounding potential to

compute the candidate event time in a similar manner as described in Section 4.1.2. The bounding
potential’s event rate must be greater than or equal to the event rate of the factor potential for every
displacement along the straight line trajectory of the active point mass [see Eq. (2.72)]. On an out-state
request, the event is first confirmed with a probability proportional to the ratio of the event rates of
the factor and the bounding potential. Here, the active point mass is time-sliced to the candidate
event time and the event rates are computed using the derivative method of the two potentials. The
velocity and the time stamp of the active point mass are only transferred to the non-active one (while
keeping their branches consistent) if the event is confirmed. The out-state is returned to the mediator
in both cases.

The TwoLeafUnitCellBoundingPotentialEventHandler uses a cell-based bounding potential.
As introduced in Section 4.1.1.6, such a bounding potential stores piecewise cell-bounded derivatives
for a specific periodic cell system to which the event handler has access. On an event-time request,
the event handler first extracts the two point masses from the in-state and localizes them within their
respective cells. The cell system’s relative_cell method then determines the relative cell. This
builds, together with an exponentially distributed random number and optionally specific charges
of the point masses, all arguments of the cell-based bounding potential’s displacement method.
Similar arguments are used for the derivative method. The former method allows to compute the
candidate event time, while the latter is used to confirm the event on an out-state request. If required,
the out-state is constructed as explained in the previous paragraph.
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The displacement returned by the cell-based bounding potential might move the active point
mass out of its cell. The corresponding candidate event time is, however, always preempted by a
cell-boundary event whose candidate event time places the active point mass on the next cell boundary
in its direction of motion (the corresponding event handler is introduced in Section 4.2.1). Another
remark for the event handler that uses a cell-based bounding potential is related to the excluded relative
cells of the underlying cell system. As discussed in Section 4.1.1.6, the cell-based bounding potential
does not store derivative bounds for these cases. The in-state should thus not contain point masses
whose relative cell is excluded (otherwise the event handler raises an exception). Since the in-state
identifiers for the event handlers are constructed in the activator, this element of JF should not generate
such problematic in-states for the event handler with the cell-based bounding potential. (For the tag
activator of JF-V1.0, this is achieved by the taggers listed in Appendix A.)

The TwoLeafUnitEventHandlerWithPiecewiseConstantBoundingPotential dynamically
constructs a piecewise constant bounding potential. For the time-sliced position ra of the active point
mass with velocity v and the position rt of the non-active point mass, the event handler assumes a
constant bounding event rate given by

qBounding
M ,a = max

[
qM ,a(ra,rt ), qM ,a(ra + v∆t,rt )

]
+ c. (4.9)

Here, qM ,a(ra,rt ) is the event rate of the factor potential that should be bounded (which can be
easily obtained using the derivative method). The constant bounding event rate qBounding

M ,a is
straightforwardly integrated to first compute the candidate event time and to afterwards confirm the
out-state. The interval length |v|∆t (which is at the same time an upper bound for the maximal
displacement of the active point mass) and the constant c are set on initialization of the event handler.
These should be chosen in a way that, on the one hand, the bounding event rate certainly provides an
upper bound and, on the other hand, the proportion of unconfirmed events remains small.
A non-inverted factor potential (that corresponds to a given factor type) may be associated with

several bounding potentials during one run of the application. Consider, e.g., a distance-dependent
potential between all pairs of point masses which diverges if the two interacting point masses are at the
same position. It is then possible to associate every pair of interacting point masses in non-neighbored
cells with a cell-based bounding potential. Every pair in neighbored cells, however, has to be associated
with a non-cell-based bounding potential because the cell-based one would diverge. The distinction is
carried out in the activator who creates the in-state identifiers of the different event handlers.

4.1.4 Cell-Veto Event Handler

The LeafUnitCellVetoEventHandler computes cell-veto events for a pairwise distance-dependent
interaction in a system with periodic boundaries. It realizes a set of pair factors with the same factor
type that all include the same independent active point mass as discussed in Section 2.6. Like the
cell-based bounding potential in Section 4.1.1.6, this event handler relies on a periodic cell system.
The event handler iterates similarly over all non-excluded relative cells of the zero_cell as well as
over all possible directions of motion, and receives derivative bounds from an estimator. The resulting
cell-event rates are then used to set up Walker’s algorithm using the Walker class (once per possible
direction of motion). This class provides the total cell-event rate, which is independent of the active
point mass’s cell for the considered distance-dependent factor potential. It also allows to sample a
relative cell with a probability proportional to the corresponding cell-event rate.
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On a candidate-event-time request, the event handler only receives the part of the in-state necessary
to compute the candidate event time, that is, the branch of the active point mass. Its lifting information
and the total cell-event rate for the relevant direction of motion provide, together with an exponentially
distributed random number, the candidate event time [see Eq. (2.75)]. Also, Walker’s algorithm
provides the relative cell of the vetoing factor. Translating the relative cell with respect to the cell of
the active point mass using the translate method of the underlying cell system yields the target
cell, which is returned together with the candidate event time. The mediator determines the target
point mass present in the target cell using the activator (if it exists) and its branch accompanies the
out-state request. The event handler can then construct the out-state after a confirmation of the event
in a similar manner like the event handlers with a bounding potential in Section 4.1.3.

The cell-veto event handler is a good example to justify the seemingly complicated communication
with the mediator. It would be possible, in principle, to transmit one in-state per factor in the set
of factors treated by the event handler. The cell-veto event handler can then compute the out-state
of the vetoing factor without receiving new information in the send_out_state method. However,
the argument of the send_event_time method would be a great part of the full global state, in
conjunction with the corresponding need to copy the data of a large portion of the full global state for
each candidate-event-time request.

4.1.5 Event Handlers for Factors M with |IM | > 2

So far, the discussed event handlers realized factors or sets of factors that involved only two point
masses, that is, (sets of) factors M with an index set |IM | = 2. This led to a trivial out-state
computation: For confirmed events, the velocity and the time stamp of the independent active point
mass are transferred to the non-active point mass and both branches are kept consistent (which can and
should be conveniently done in separate methods so that this is only implemented once). However,
event handlers realizing factors M involving more than two point masses, i.e., their index set |IM | > 2,
need to compute lifting probabilities [see Eqs. (2.62) and (2.63)].

JF-V1.0 implements an event handler that dynamically constructs a piecewise constant bounding
potential for distance-dependent factor potentials between more than two point masses (in the
simulations in Section 6.3, this event handler is used for the three-body bending potential of
Section 4.1.1.5). This is done in a similar manner like the event handler for pair factor potentials
in Section 4.1.3. At first, Eq. (4.9) yields the constant bounding event rate (the different event rates
of the factor potential just have more arguments as more point masses are involved). The following
computation of the candidate event time and the confirmation of an event remains the same.
The construction of the out-state for a confirmed event, however, demands the computation of the

derivative in the direction of motion of the active point mass with respect to all involved point masses.
Each derivative is evaluated at the positions of the point masses time-sliced to the event time. (Here,
also negative derivatives are important. Hence, the potentials implement a derivative method and
not a method that returns event rates.) These derivatives, together with the identifier of the point
mass with respect to which it was calculated, are then used to fill an instance of the Lifting class.
Afterwards, this class determines the identifier of the next active point mass according to the correct
lifting probabilities. This determines the out-state returned to the mediator.
The RatioLifting class uses the lifting probabilities in Eq. (2.65) to determine the identifier of

the next active point mass. The absolute values of the negative derivatives and their identifiers are
stored in a list. Drawing a uniformly distributed random number between 0 and the sum of all values
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in the list then determines the summand in the list, and thus the identifier of the next active point mass.
JF-V1.0 further implements the possible choices of the lifting probabilties introduced in [7].
Moreover, event handlers realizing an aforementioned special kind of factor with |IM | > 2 are

implemented. One of them uses a cell-based bounding potential; another one computes cell-veto
events. In the factor a pairwise factor potential is summed for all pairs of point masses in two different
composite point objects. Two of the estimators presented in Section 4.1.1.6 are able to compute
cell-based upper bounds on the derivatives for such factors. The two event handlers can thus compute
the candidate event time as the similar event handlers for the case of |IM | = 2. The confirmation of
the event on an out-state request, however, involves a sum over the derivatives of the pairwise factor
potential with respect to the active point mass along its direction of motion. Here, the derivative is
evaluated one after another at the separations between the active point mass in one composite point
object and all target point masses in the other composite point object, respectively. Similar summations
are carried out to finally determine the out-state with the help of an instance of the Lifting class.

These event handlers are typically used together with a cell-occupancy system in the activator that
tracks composite point objects instead of point masses. The activator just returns the identifiers of
composite point objects that are stored within the cell-occupancy system when the in-state identifiers
are requested. The tree state handler then constructs branches of these which automatically include all
relevant point masses. (For the case of the cell-veto event handler the in-state of a single factor in the
set of factors treated is, as explained before, constructed in two steps.)
One can also directly construct a bounding potential for the same kind of “summed” factors. A

bounding event rate is given by the sum of the bounding event rates for the pairwise factor potentials
between the active point mass located in one composite point object and every point mass located in
the other composite point object. This is implemented in a separate event handler of JF-V1.0 that can
then realize, for example, such factors when the target composite point object is located in an excluded
relative cell with respect to the composite point object that contains the active point mass.

4.1.6 Event Handlers for the Rigid Motion of Composite Point Objects

The event handlers of the previous sections were implemented for the case of a single active point
mass with an independent velocity. If the tree state handler furthermore stores composite point objects,
their velocity was just induced and the event handlers just had to keep the time-slicing of the in-state
branches consistent. As a showcase for the collective-motion possibilities of ECMC integrated into
JF by the use of composite point objects, JF-V1.0 implements event handlers that can be used with
independent active composite point objects (and thus more than one induced active point masses).

The RootUnitActiveTwoLeafUnitEventHandler realizes a single pair factor M = ({i, j},TM ),
where i and j are point masses. Only one of them is induced active. (Otherwise all lifting moves must
be rejected anyways.) Therefore, i and j belong to different composite point objects, of which only
one is independent active. The corresponding distance-dependent factor potential is inverted and this
event handler is thus very similar to the corresponding event handler in Section 4.1.2. It receives the
same in-state, i.e., the branches of the involved point masses, and computes the candidate event time in
the same manner. To construct the out-state, however, the velocity and time stamp of the independent
active composite point object including i are transferred to the composite point object including j,
while keeping their branches consistent. These branches accompany the out-state request. A similar
event handler with the same lifting move between composite point objects in its out-state computation
is implemented for the special kind of “summed” factor of the previous Section 4.1.5.
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4.2 Event Handlers for Pseudo-Factors

Introducing pseudo-factors into ECMC allows to formulate its time evolution entirely in terms of
events. Still, there is a crucial distinction between event handlers realizing a single pseudo-factor or a
set of these. For the former, the full in-state is known at the candidate-event-time request, while for
the latter, it is only known at the out-state request.

4.2.1 Cell-Boundary Event Handler

As discussed in Section 3.5.1, cell-occupancy systems in JF-V1.0 stored in the activator have to be kept
strictly consistent with the global state stored in the state handler. This is enforced by cell-boundary
events of the CellBoundaryEventHandler (see Fig. 3.2). In order to compute its events, the event
handler has access to the cell system and the tracking level of the cell-occupancy system. The latter is
required because the cell-occupancy system can track both point masses and composite point objects.
Several cell-occupancy systems require several cell-boundary event handlers initialized with different
cell systems and tracking levels.

The call of the send_event_time method is accompanied by a single branch with a single active
unit on the tracking level of the cell-occupancy system. (This active unit, which either refers to a
point mass or a composite point object, can have both an independent or an induced velocity.) Hence,
a cell-boundary event handler realizes a single pseudo-factor depending on a single identifier. The
candidate event time corresponds to the time-sliced minimal position of the active unit that belongs to
the successor cell in its direction of motion. (For this, the cell system’s successor and cell_min
methods are used.) This also builds the out-state.
After the out-state of a cell-boundary event has been committed to the global state, the following

update of the cell-occupancy system in the activator will place the tracked active unit in the new cell
and thus keeps the internal state consistent.

4.2.2 Event Handlers connected to Output Handlers

Output handlers in the input-output handler should be run after the out-state of events of certain event
handlers have been committed to the global state (step 9 in Fig. 3.3). This behavior is achieved by the
mediating methods in the mediator which only get executed depending on the class of event handlers
whose out-state was committed (see Section 3.7).

The mediator implements such a mediating method for the abstract SamplingEventHandler class.
This class is furthermore connected to an output handler, i.e., it possesses a property with the name of
an output handler. After an event from an (inheriting) event handler, the corresponding mediating
method passes the full global state from the state handler to the output handler with the given name (via
the input-output handler). This output handler can then use the global state to sample an observable
(see Section 3.6.2).

The FixedIntervalSamplingEventHandler of JF-V1.0 creates sampling events with equally
spaced candidate event times. The spacing, or rather the sampling duration, is set on initialization.
The implementation of the send_event_time method does not rely on any in-state because it
just uses the candidate event time that was returned last. The out-state request is accompanied
by the branches of all independent active point masses or composite point objects returned by the
extract_active_global_state method of the tree state handler. (Since both point masses and
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composite point objects may be independent active for this event handler, both cases are just referred
to by independent active units in the following.) In the out-state, all units that appear in the transmitted
branches are time-sliced to the event time.
The sampling event handler of JF-V1.0 can be viewed as realizing a set of pseudo-factors which

depends on the identifiers of all possible independent active units. Only at the time of the out-state
request, the actually independent active units are known and can be transmitted. Another (more
costly) implementation could implement the send_event_time method with an in-state given by the
branches of all independent active units. These would be stored for the following out-state request so
that the send_out_state method does not require any arguments. This would necessitate, however,
the recomputation of the candidate event time whenever an independent active unit changes.
The mediator defines a different mediating method for the abstract DumpingEventHandler class

that allows to store the state of an entire run of the application in an output handler (see Section 3.6.2).
The FixedIntervalDumpingEventHandler creates corresponding events in a fixed interval in the
same manner as the previously discussed sampling event handler.

4.2.3 End-of-Chain Event Handler

An end-of-chain event handler stops an event chain and initializes a new one after a given chain
duration. The next candidate event time can be returned without any in-state and just depends on
some distribution of chain durations. The event handler also samples the identifier of the desired
independent active unit at the beginning of the new event chain. This identifier is returned together
with the candidate event time. (The event handler is therefore aware of all possible identifiers of the
state handler, see Section 5.1).

The branch of this unit is received as the argument of the send_out_statemethod together with the
branch of the currently independent active unit. To create the out-state, the event handler samples a new
direction of motion based on the old direction to construct a new velocity with the same absolute value
as before. All units in the branch of the current independent active unit are time-sliced to the event time
and their velocity is set to zero. Then, the new velocity and time stamp of the beginning independent
active unit are set and its branch is kept consistent. Such an event handler realizes again a set of
pseudo-factors (see Fig. 4.1). JF-V1.0 implements the abstract EndOfChainEventHandler class
that implements the described actions. An inheriting class just has to define methods that determine
the new chain duration, the identifier of the new independent active unit, and the new direction
of motion, respectively. The SameActivePeriodicDirectionEndOfChainEventHandler of JF-
V1.0 maintains the current independent active unit and just changes its direction of motion in a periodic
manner. Hence, this event handler does not return anything besides the candidate event time in the
send_event_time method.

4.2.4 Start/End-of-Run Event Handlers

The only obligatory event handler in a run which uses the tag activator of JF-V1.0 (see Section 3.5) is
an event handler inheriting from the abstract StartOfRunEventHandler class. Its out-state is the
first one committed to the global state. Also, the tag activator uses this event handler as an entry point
to determine which events should be activated and created thereafter.

JF-V1.0 implements the InitialChainStartOfRunEventHandler, which also initializes the
global lifting state (the input handlers in Section 3.6.1 only initialized the global physical state). On
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Figure 4.1: The end-of-chain event handler realizes a set of pseudo-factors that couples the final active unit of
the old chain to the beginning active unit of the new chain. (a): At the time of the event-time request, the final
active unit of the old chain is not yet known and thus a set of pair pseudo-factors is treated. (b): At the time of
the out-state request, the final active unit of the old chain is known and the beginning active unit of the new
chain was sampled. Hence, the vetoing pseudo-factor is determined. (c): The new event chain has a different
active unit with a new direction of motion. The old active unit is time-sliced to the event time. This figure has
been published in [39] (see publication in Appendix B).

initialization, the event handler class receives an identifier of a point mass or composite point object
which should be independent active at the beginning of the run. Also, the absolute value of the desired
velocity and a direction of motion is set. The send_event_time method returns the candidate event
time 0.0 and the identifier. The out-state request is accompanied by the branch of the corresponding
identifier and the event handler can set the velocity and time stamp to construct the out-state.
An end-of-run event handler inherits from the abstract EndOfRunEventHandler class, for which

a mediating method is defined in the mediator (step 9 in Fig. 3.3). This mediating method raises
an EndOfRun exception which terminates the main iteration loop of ECMC in the mediator (see
Section 3.7). Before the run is terminated, an observable can be sampled. For this, the end-of-run
event handler is connected to an output handler like the event handlers described in Section 4.2.2.
The FinalTimeEndOfRunEventHandler of JF-V1.0 finishes the run after a fixed final time, which
is returned as the candidate event time. An out-state request is accompanied by the branches of all
independent active units which are time-sliced to create the out-state.
Events of event handlers that compute a candidate event time without any in-state should only be

trashed in the scheduler after their out-state was committed to the global state. Also, the next event of
the same event handler should be computed and inserted into the scheduler directly afterwards. Using
the tag activator of JF-V1.0, this is easily achieved by accordingly chosen create and trash tag lists.
Only the sampling/dumping, end-of-chain, and end-of-run event handlers are affected by this.

4.2.5 Mode Switching Event Handlers

Section 4.1.6 introduced event handlers suited for the rigid motion of entire composite point objects.
This implies that the point masses belonging to independent active composite point objects are moved
collectively, which renders the algorithm non-ergodic. Mode switching to the case of independent active
point masses becomes a necessity in order to have all factors be considered during one run. The mode
switching in both directions is achieved by different instances of the RootLeafUnitActiveSwitcher
of JF-V1.0 (the direction is set on initialization). Hence, during one run of the application two
of these are used but the event of only one of them is stored in the scheduler at any time. The
send_event_time method samples a new candidate event time based on the time stamp of the
independent active unit in the in-state. An out-state request is accompanied by the entire tree of the
current independent active unit which allows to change the mode in the out-state.
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CHAPTER 5

Run Specifications

The last two chapters extensively introduced the various elements of JF and their implementation in
JF-V1.0. This chapter summarizes the the last two parts of the application which were only hinted
before. First, a limited amount of the elements requires access to globally shared information that
is stored in separate Python modules. Those are treated in Section 5.1. By this, for example, the
thermodynamic β for a simulation is only set once, and not repeatedly during the initialization of
event handlers. (Event handlers realizing factors use β in order to sample the exponentially distributed
positive factor potential change ∆U+M ). Section 5.2 introduces the user interface for each run of the JF
application. In JF-V1.0, it consists of configuration files in the INI-file format. This allows to specify
physical and algorithmic parameters without the necessity to write Python code.

5.1 Globally Shared Information

Globally shared information of JF-V1.0 is stored in the setting package and in specialized modules
therein. The former stores information available in every run, whereas the latter specifies different
system shapes in different modules (e.g., the parameters of a hypercuboid or hypercubic simulation
box). By this, the parameters of a NVT (canonical) physical ensemble are stored, whereby the
parameters remain unchanged during a run. Here, N is the number of point masses, V the volume of
the simulation box, and T is the temperature. During one run of the application, typically only one of
the specialized modules is initialized besides the setting package.
The setting package stores the thermodynamic β and the dimension of the current simulation.

(The latter is used, for example, in the merged-image Coulomb potential of Section 4.1.1.4 that was
only implemented for a cubic box in three dimensions. An exception is thrown for inappropriate
dimensions.) Furthermore, it stores variables that allow all elements of JF to autonomously construct
all possible global state identifiers. This is required, e.g., by the end-of-chain event handler of
Section 4.2.3. In JF-V1.0, the stored variables within the setting package are specific to the tree state
handler and only allow for an arbitrary number of identical trees representing composite point objects
of height at most two. This is in accordance with the current restriction of the cell-occupancy systems
(see Section 3.5.1), and the currently implemented input handlers (see Section 3.6.1). (Moreover, one
of the taggers in Appendix A uses this in order to extrapolate given factors between two composite
point objects to factors between all of them.) Future versions are going to replace the storing variables
by flexible objects that depend on the used state handler.
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Several specific system shapes are implemented in as many modules within the setting package.
JF-V1.0 implements hypercubic and hypercuboid system-shape modules. The former adds a single
variable that stores the unique system length. The latter, in contrast, stores a list of system lengths.
Both modules moreover implement a method to sample a random position and methods that implement
periodic boundaries (these methods correct, for example, a position for periodic boundaries or compute
the minimum separation vector between two positions within the system box).
Each system-shape module defines a “setter” class that initializes both the module itself and the
setting package properly in its __init__ method. Arguments of this method are β, the dimension,
and the variables specific to the system shape. The identifier variables, however, are initialized by the
input handlers. (That is because if an input handler, e.g., reads an initial global physical state from a
file, the according parameters are already encoded there.) During one run of the application only a
single setter class is used. This allows to use elements of JF within the run whose implementation
uses variables from the setting package or the chosen system-shape module.

The elements of JF that just require valid random positions (like the input handlers in Section 3.6.1
that create a random initial global physical state) or just rely on periodic boundaries (like the event
handlers in Chapter 4) should be, nevertheless, independent of the system-shape modules. For the
case of the periodic boundaries, this is achieved by defining the abstract PeriodicBoundaries class
that only possesses abstract methods. All system-shape modules then implement an inheriting class
thereof. The setter class of a specific system-shape module sets an instance of this inheriting class
directly in the setting package. Similarly, the method creating random positions is broadcast.

By this, there is a very limited amount of elements that can only be used if the correct system shape
was chosen (that is, only a limited amount of modules, within which the elements are implemented,
import the specific system-shape modules). The merged-image Coulomb potential and its bounding
potential are only implemented, as mentioned, for a cubic simulation box. The cuboid periodic cells
(see Section 3.5.1) use the hypercuboid system-shape module. (It is noteworthy, however, that choosing
the hypercubic simulation box also initializes the hypercuboid module so that the cuboid periodic
cells are usable for both system shapes.) Since a pdb file can only specify hypercuboid system shapes,
the corresponding output handler explicitly uses the hypercuboid module as well (see Section 3.6.2).

Note that the current setting package and the system-shape modules do not allow for changes of
the stored NVT physical parameters during one run of the application. Moreover, it is not possible to
store other physical parameters (like, e.g., the pressure P). This has to be considered in future versions
of the JF application.
To end this section (and to properly discuss all parts of the JF application), the base package is

mentioned. Within this package, modules with several helper classes and functions are located. This
includes, for example, functions acting on vectors. However, the base package does not store any
additional data which distinguishes it from the setting package.

5.2 Configuration Files

The executable run.py script of JF starts a run of the application. The first positional argument of
this script is a configuration file in the INI-file format that specifies the physical and algorithmic
parameters of the run (i.e., the temperature, system shape and size, dimension, type and number of
composite point objects and point masses, event handlers, factor potentials, lifting schemes, total run
time, sampling frequency, etc.).
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Figure 5.1: An exemplary configuration file in the INI-file format that specifies the physical and algorithmic
parameters of a run of the JF application. (This figure shows excerpts of a configuration file that is part of
JF-V1.0: src/config_files/2018_JCP_149_064113/coulomb_atoms/power_bounded.ini. This file
starts a simulation treated in Section 6.1.1.) (a): A typical __init__ method of a JF class including type
hints. (b): Excerpts of the configuration file where some lines are split for clarity. The obligatory [Run]
section specifies the mediator and the setting. The ensuing sections correspond to classes of JF. Within a
section, a property specifies the argument name in the class’s __init__ method and the corresponding value
the argument itself. This figure has been published in [39] (see publication in Appendix B).

Within the architecture of JF-V1.0, all parameters are set during the initialization of the different
elements, i.e., as arguments of the __init__methods of the respective classes (e.g., the temperature is
set on initialization of the setting class, and the end-of-run time is set on initialization of the end-of-run
event handler). A configuration file is thus composed of sections that each corresponds to a class. A
section contains pairs of properties and values. The former corresponds to the name of the argument
in the respective class’s __init__ method, the latter provides the argument itself (see Fig. 5.1).
The content of the configuration file is parsed by the Python configparser module and passed

to the factory of JF (which is located in the factory module in the aforementioned base package).
The values used as the arguments in the initialization methods are parsed as strings and have to be
converted by the factory. To do so, it inspects the (mandatory) type hints in the respective __init__
method. The factory of JF-V1.0 allows for the most usual basic data types (i.e., bool, float, int,
str) as well as lists of these (given as a comma separated list within the configuration file).
Furthermore, the values can refer to classes that are part of JF (or lists thereof). The constructed

argument by the factory is then an instance of the corresponding class. If the initialization of this
instance requires arguments itself (because the corresponding __init__ method expects arguments),
these are set in a similarly named section of the same configuration file.1 This implies a tree
representation of the sections that appear in the configuration file of a certain run (see Fig. 5.2).
1 According to PEP 8, class names (and hence, section names) are given in CamelCase. In contrast, argument names of the
__init__ method (and hence, properties and values within the configuration file) are given in snake_case.
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Figure 5.2: Tree representation of the configuration file shown in Fig. 5.1. Only a part of the tree is shown
and some event handler names are shortened. The children of the [TagActivator] section correspond to all
declared taggers of a run, which are itself associated to event handlers (see Section 3.5). Their tags are given
by the section names and can thus appear in the create and trash tag lists of all taggers. This figure has been
published in [39] (see publication in Appendix B).

If the same class should be used with different initialization arguments during a run (this usually
occurs for classes of taggers that should be associated with different event handlers), the factory allows
for aliases. These are then used for both the value and the section names. The name of the class that
should be initialized by the factory follows the value in parentheses. The factory moreover changes
the name of the class to the alias during the run. (This is very convenient for the taggers of the tag
activator, introduced in Section 3.5, that use the class name as its tag, if not specified otherwise.)
In the configuration file, the only obligatory [Run] section specifies the mediator (i.e., either the
SingleProcessMediator or the MultiProcessMediator) and the setter class of the system-shape
module. The ensuing sections then choose the parameters in the __init__ methods of the two
corresponding classes. The order of the sections is irrelevant.
The application typically creates output in files using the output handlers (see Section 3.6.2).

Run-time information is logged by using the Python logging module either to standard output or to a
file, and takes place on a variety of levels from DEBUG to INFO to WARNING. Both the output and the
logging level can be specified using optional command-line arguments of the run.py script. Logging
information ranges from the identification of the used CPUs to the initialization information of classes
to run-time information within the main iteration loop of ECMC (e.g., the event handler that created
the event with the shortest candidate event time in each iteration). Also, a unique identification hash is
part of the logging output (created by using the Python uuid module). This hash is furthermore a part
of all created output files which allows to uniquely link them to log files.
Besides the run.py script, there also exists the executable resume.py script in JF-V1.0. This

allows to restart a run given the file created by the dumping output handler of Section 3.6.2 as the first
positional argument. (Naturally, this script likewise relies on the Python dill package [78, 79].) It is
noteworthy that the resume.py script can choose a logging level independently and does therefore
not necessarily have the same level as the run which created the used file. By this, the resume.py
script with a chosen higher logging level is predestined for debugging.
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All-Atom Simulations Using the Application

This chapter showcases the flexibility and potential of the JF application already in its first version.
To do so, a variety of all-atom models are simulated in a multitude of ways. Section 6.1 treats
simulations for two electrically charged point masses that interact via the long-ranged Coulomb
interaction. Section 6.2 considers simulations of two finite-size dipoles, followed by simulations for
two water molecules in Section 6.3. The results reproduce published data [7].
The used configuration files to produce the data presented in this chapter are part of JF-V1.0 and

thus publicly available within the repository on GitHub. For this reason (and since some of these are
rather lengthy) they are not a part of this thesis. Instead, their implemented logic is explained in detail.
All configuration files use the single-process mediator described in Section 3.7. However, the

configuration files are easily modified to use the multi-process version (see Section 5.2). Furthermore,
all files choose the hypercubic system-shape module in three dimensions. The choices of the heap
scheduler (see Section 3.4), tree state handler (see Section 3.2) and tag activator (see Section 3.5) are
self-explanatory as they are the sole implementations of the corresponding elements in JF-V1.0. The
initial global physical state is created randomly by the corresponding input handler (see Section 3.6.1).
Differences in the configuration files occur for the chosen event handlers which realize different

factors and pseudo-factors. As discussed in Section 3.5, the used tag activator associates each event
handler with a tagger that, on the one hand, generates its in-state identifiers (which are transformed
to in-states using the tree state handler). On the other hand, taggers associate event handlers and
their events with a tag. These tags are used in the create and trash tag lists of all taggers. By this,
it is determined which events are trashed in the scheduler after an event of a certain event handler
was committed to the global state, and which events have to be computed in the corresponding event
handlers in the following leg of ECMC’s piecewise non-interacting time evolution. Note that events
and event handlers are referred to by their associated tags in this chapter.
All configuration files have unique start-of-run, end-of-run, end-of-chain, and sampling event

handlers that all realize pseudo-factors (see Section 4.2). Each of them is associated with a tagger
that does not generate any in-state identifier and associates an accordingly chosen tag (e.g., the
tag of the start-of-run event handler is start_of_run). After the initial start-of-run event, event
handlers realizing all factors and pseudo-factors have to compute events. In contrast, only the just
committed event is trashed in the scheduler. After a sampling event, solely the same event is trashed
and recomputed. An end-of-chain event is more complex because it changes the velocity of the
currently independent active point mass or composite point object. Therefore, all factor events need
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to be trashed in the scheduler and to be recomputed in the corresponding event handlers afterwards
(together with a new end-of-chain event). Since an end-of-run event finishes a run of the application,
it is irrelevant which events should be trashed and computed afterwards. The described create and
trash decisions are valid for all simulations in this chapter and are encoded in the tag lists of the
corresponding taggers.
The data analysis of the observables in each section of this chapter follows a simple and robust

method. Instead of using, e.g., the blocking method of Section 2.1.3 to estimate the error of a sample
average of a single run, each presented simulation was run 24 times. The uncorrelated sample averages
of each run can then be treated with Eq. (2.24). (Naturally, the sample averages are calculated after the
Markov chain initially reached the equilibrium distribution.) Additionally, a reversible Markov-chain
simulation (using the Metropolis algorithm) was run for every model. Here, the error was estimated
using the aforementioned blocking method. This simulation was run for a relatively long simulation
time in order to obtain a result with a relatively small standard error. This result is then used to
verify the results of the ECMC simulations (where the simulation times were balanced between being
reasonable long and having a comparable standard error as the reversible simulation).
All of the simulations in this chapter use the merged-image Coulomb potential of Section 4.1.1.4.

In order to ensure that the chosen cut-offs of the sums in real and Fourier space do not introduce a
systematic error, the ECMC simulations were also repeated with larger cut-offs.

6.1 Interacting Charged Point Masses

This section treats the ECMC sampling of the Boltzmann distribution for two identical charged point
masses that interact via the merged-image Coulomb pair potential of Section 4.1.1.4 and are described
by a single Coulomb pair factor.1 The side length of the three-dimensional cubic simulation box is
chosen as L = 1. In addition to that, periodic boundary conditions are used and βc1c2 = 2, where c1
and c2 are the electric charges of the two point masses. At each time, one of the two point masses is
active and moves parallel to one of the Cartesian coordinate axes (the initially active point mass and
its velocity is chosen by the start-of-run event handler). All trees are trivial in the tree state handler as
they contain only a single node. This also applies to the constructed in-state branches, which then
contain just a single cnode.

Statistically equivalent output is obtained by associating the non-invertible merged-image Coulomb
potential with its bounding potential in Section 6.1.1, or else with a cell-based bounding potential in
Section 6.1.2. This will require the usage of a cell-occupancy system. Section 6.1.3 then uses the
cell-veto algorithm for the treated pair factor. In all three simulations, a sampling event is followed by
computing a sample of the minimum separation between the two point masses in an output handler
(see Fig. 6.1 for a comparison of the results of the different simulations).

6.1.1 Merged-Image Coulomb Bounding Potential

This most simple power_bounded.ini configuration file requires only a single factor event handler
that has access to both themerged-image Coulomb and its bounding potential in order to compute events
(see the discussion of the TwoLeafUnitBoundingPotentialEventHandler in Section 4.1.3). The
1 The used configuration files are located in the src/config_files/2018_JCP_149_064113/coulomb_atoms directory
of JF-V1.0.
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Figure 6.1: Cumulative histogram π(|r12 |) of the minimum pair separation |r12 | = |r2 − r1 | between the nearest
images of two electrically charged point masses 1 and 2 in a three-dimensional cubic simulation box with
periodic boundary conditions. The results reproduce published data [7, Fig. 8]. Moreover, π(|r12 | < 0.6)
including standard errors is shown for each simulation method. The obtained values agree well with the
weighted average of all values within their respective standard errors. 1 : Reversible Markov-chain Monte
Carlo. 2 : Method of Section 6.1.1. 3 : Method of Section 6.1.2. 4 : Method of Section 6.1.3. This figure
has been published in [39] (see publication in Appendix B).

corresponding tagger associates the coulomb tag and generates the identifiers of the two point masses
to construct the in-state. After the out-state of a coulomb event has been committed to the global
state, only the very same event is trashed in the scheduler. Also, only the coulomb event handler
computes a new event afterwards. (Of course, it would be feasible to hard-wire the determination of
which event handler needs to compute an event and which events should be trashed for this simple
system. Nevertheless, the tag activator is used to give an easy introduction.)
The configuration file can be modified to simulate N point masses with a Coulomb pair factor

for each pair of point masses. The input handler has to create a corresponding global physical state
initially, and the coulomb tagger requires N − 1 instances of its event handler. When the in-state
identifiers are requested, the tagger generates all identifier pairs that include the currently active point
mass.

6.1.2 Cell-Based Bounding Potential

The cell_bounded.ini configuration file uses a cell-occupancy system within the tag activator (see
Section 3.5.1). The size of the underlying cell system is arbitrarily chosen for this showcase. For each
cell, the directly neighbored cells are excluded due to the singularity of the merged-image Coulomb
potential at vanishing separations of the point masses. The cell-occupancy system tracks all point
masses independently of their charges.

The Coulomb pair factor is realized by two different event handlers during one run of the application.
This changes based on the active and the target cell (that is, the cell of the active and non-active
point mass, respectively) at the moment of the call of the activator’s get_event_handlers_to_run
method. If the target cell is not excluded with respect to the active cell, the coulomb_cell_bounding
tagger generates the two identifiers to construct the in-state for its event handler. This event handler
(the TwoLeafUnitCellBoundingPotentialEventHandler of Section 4.1.3) uses a cell-based
bounding potential besides the merged-image Coulomb potential in order to compute events. The
cell-based derivative bounds are computed at the beginning of the run using the boundary-point
estimator of Section 4.1.1.6.
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Otherwise the target cell is excluded with respect to the active cell. Then, the coulomb_nearby
tagger generates the in-state identifiers for its event handler that computes an event in the same way as
the event handler of the previous Section 6.1.1.

Modifying this configuration file to N > 2 interacting point masses possibly introduces surplus point
masses in the internal state. The coulomb_surplus tagger associates the corresponding Coulomb
pair factors with the merged-image bounding potential (although it would also be possible to use a
cell-based bounding potential). The corresponding section in the configuration file that initializes this
tagger is already included in the N = 2 version available in JF-V1.0.
The CellBoundaryEventHandler of Section 4.2.1 computes cell-boundary events to keep the

internal state consistent with the global state. The associated cell_boundary tagger just generates
the identifier of the currently active point mass to construct the in-state. After cell_boundary,
coulomb_cell_bounding, coulomb_nearby, and coulomb_surplus events, events with all of
these tags are trashed and recomputed (if the corresponding taggers generate in-state identifiers).

6.1.3 Cell-Veto Algorithm

The cell_veto.ini configuration file uses the cell-veto algorithm to treat a set of Coulomb
pair factors at once. The set contains every pair factor between the active point mass in its
active cell and hypothetical target point masses in non-excluded cells of the active cell. This
simulation uses a similar cell-occupancy system as in the previous Section 6.1.2. Moreover, the
LeafUnitCellVetoEventHandler of Section 4.1.4 uses the same boundary-point estimator.
The cell-veto event handler computes the candidate event time of the cell-veto event based on

the cnode branch of the active point mass. The corresponding in-state identifier is generated by the
associated cell_veto tagger. Together with the computation of the candidate event time, the target
cell is sampled. Since there is only a single Coulomb pair factor, this target cell does typically not
contain the non-active point mass and the corresponding cell-veto event is very often rejected. (This
leads, together with the fact that a new iteration in the mediator is started also after unconfirmed events,
to a slowed down simulation. This increases its standard error in Fig. 6.1 because the simulation times
were nevertheless chosen similarly to the other methods of this section.)

The remaining part of this configuration file is very similar to the one of Section 6.1.2, including
the coulomb_nearby, coulomb_surplus, and cell_boundary taggers and their tag lists. The
coulomb_surplus tagger is again only relevant if the configuration is modified to N > 2.

6.2 Interacting Dipoles

The configuration files of this section sample the Boltzmann distribution for two identical finite-size
dipoles in a three-dimensional cubic simulation box with side length L = 1 and periodic boundary
conditions.2 The value of the thermodynamic beta is chosen as β = 1. In the considered model,
charged point masses in different dipoles interact via the merged-image Coulomb potential (pairs
1–3, 1–4, 2–3, and 2–4 in Fig. 6.2). Here, the charges of the point masses in a dipole are chosen as
ci = ±1. The point masses within each dipole interact via the displaced-even-power-law potential
of Section 4.1.1.3 with the parameters pDEPP = 2, kDEPP = 200, and r0 = 0.1 (pairs 1–2 and 3–4).

2 The used configuration files are located in the src/config_files/2018_JCP_149_064113/dipoles directory of
JF-V1.0.
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Figure 6.2: Cumulative histograms π(|r13 |) and π(|r14 |) of the minimum pair separations |ri j | = |rj − ri |
between the nearest images of two electrically charged point masses i and j in different finite-size dipoles (see
inset). The simulations used a three-dimensional cubic simulation box with periodic boundary conditions. The
results reproduce published data [7, Fig. 11]. Moreover, π(|r13 | < 0.22) and π(|r14 | < 0.22) including standard
errors are shown for each simulation method. The obtained values agree well with the corresponding weighted
average within their respective standard errors. 1 : Reversible Markov-chain Monte Carlo. 2 : Method of
Section 6.2.1. 3 : Method of Section 6.2.2. 4 : Method of Section 6.2.3. 5 : Method of Section 6.2.4. This
figure has been published in [39] (see publication in Appendix B).

This potential yields a fluctuation of the sampled dipole separation around r0 (this potential is called
harmonic in the following). A repulsive short-range potential (using the inverse-power-law potential
of Section 4.1.1.1 with the parameters kInverse = 10−6, pInverse = 6, and without charges) between
oppositely charged point masses in different dipoles counterbalances the attractive Coulomb potential
at small distances (pairs 1–4 and 2–3). For the two latter potentials only the closest images between
the involved point masses are considered. That is because the repulsive short-range potential decays
quickly with distance whereas the intra-dipole harmonic potential should only act between point
masses that together build a dipole (and not between point masses in different periodic images of the
dipole). Each dipole is represented in the tree state handler by a composite point object made up of
two oppositely charged point masses.
Statistically equivalent output for this model is obtained in the following ways: Section 6.2.1

considers pair factors for all interactions. Section 6.2.2 combines the Coulomb factors to a single
dipole-dipole Coulomb factor and associates it with a cell-based bounding potential. The same type
of factor is treated by the cell-veto algorithm in Section 6.2.3. All of these three sections use a single
active point mass at any time. The final Section 6.2.4, in contrast, alternates between concurrent moves
of the entire dipoles with moves of the individual point masses. This showcases the collective-motion
possibilities of ECMC that are integrated into the JF application. All of the simulations sample the
minimum separation between the equally and oppositely charged point masses in the two dipoles (see
Fig. 6.2 for a comparison of the results of the different simulations).

6.2.1 Coulomb Pair Factors

Like in the simulations for two interacting charged point masses in Section 6.1, during a run of the
atom_factors.ini configuration file one of the four point masses within the two finite-size dipoles
is active at any time. This point mass has a velocity parallel to one of the Cartesian coordinate axes.
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The pair factors corresponding to the inverted harmonic and repulsive factor potentials are realized
in separate instances of the TwoLeafUnitEventHandler of Section 4.1.2 (tagged harmonic and
repulsive, respectively). This event handler computes the minimum separation between the pair of
point masses as desired by the underlying dipole model. Based on the currently active point mass,
their taggers determine the in-state identifiers for the event handlers. The constructed in-states then
consist of branches of the two involved point masses (including the cnodes of the dipole barycenters).
Since there is only a single pair factor of both types that involves the currently active point mass, a
single event handler instance is required in each tagger. The two Coulomb pair factors involving the
active point mass are realized one by one as in Section 6.1.1. For this, the coulomb tagger requires
two instances of the corresponding event handler.

The create and trash tag lists of all the discussed taggers are straightforward because after a factor
event (that is, events with the coulomb, harmonic, or repulsive tags) all factor events in the
scheduler are trashed. Similarly, all corresponding taggers generate new in-state identifiers for their
event handlers, which include the (possibly) new active point mass’s identifier.

It is noteworthy that the event handlers keep the in-state branches and thus, the dipole barycenters
consistent with the point masses’ positions. However, the properties of the composite point objects are
never used during the simulation. It would be alternatively possible to simulate four point masses
interacting via the different pair factors. (This can, of course, be achieved using JF-V1.0).

6.2.2 Coulomb Dipole Factors, Cell-Based Bounding Potential

The cell_bounded.ini configuration file combines the four Coulomb pair factors to a single
Coulomb four-body factor. (The factor potential is given by the sum of the merged-image Coulomb
potentials between the pairs 1–3, 1–4, 2–3, and 2–4 in Fig. 6.2.) As discussed in Section 4.1.1.6,
the factor event rate decays much faster with distance compared to the Coulomb pair factors. Also,
the chosen lifting scheme considerably influences the dynamics (see [7, Section IV]). The same
Section 4.1.1.6 introduced estimators that determine cell-based bounds on the factor derivative of such
a “summed” factor. This configuration file uses the Monte-Carlo estimator. (Note that the derivative
bounds of this estimator are not perfect. Very rarely it occurs that the bounding event rate is smaller
than the factor event rate during the confirmation of an event. Although this introduces a systematic
error, the rarity of these cases renders this neglectable.)

As in the previous Section 6.2.1, there is only a single active point mass at all times. Also, the same
harmonic and repulsive tagged event handlers realize the pair factors with the correspondingly
named factor potentials. However, this configuration additionally sets up a cell-occupancy system that
tracks the dipole barycenters. This is achieved by initializing its cell_level property to 1 (the level
2 would correspond to tracking the point masses). The size of the underlying cell system is again
arbitrarily chosen and only directly neighbored cells are excluded.
The coulomb_cell_bounding and coulomb_nearby taggers use the cell-occupancy system to

differentiate between the pair of dipoles being in non-neighbored or neighbored cells. The former
case is treated by an event handler using a cell-based bounding potential; the latter case by an event
handler that directly constructs a bounding potential using the bounding event rates of the Coulomb
pair factors (see Section 4.1.5). Both event handlers are initialized with a lifting scheme that is used to
choose the next active point mass. A coulomb_surplus tagger generates in-state identifiers including
surplus dipole identifiers, which only appear if the configuration file is modified to N > 2 dipoles.
The corresponding event handler also uses the directly constructed bounding potential.
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Similar to the simulation of two charged point masses using a cell-based bounding potential of
Section 6.1.2, a CellBoundaryEventHandler computes cell-boundary events. However, these
events are now based on the time when the dipole barycenter containing the active point mass
crosses the next cell boundary in its induced direction of motion. To compute the event, the event
handler acquires knowledge about the cell_level property. After such a cell_boundary event, all
events relying on the cell-occupancy system are trashed and recomputed (i.e., events with the tags
cell_boundary, coulomb_cell_bounding, coulomb_nearby, and coulomb_surplus). The
harmonic and repulsive events, however, should not be trashed and recomputed. In contrast, after
any factor event all of the factor events and also the cell_boundary event are trashed and recomputed
(because the induced active dipole may have changed).

6.2.3 Coulomb Dipole Factors, Cell-Veto Algorithm

The cell_veto.ini configuration file uses the same factors and pseudo-factors, as well as the same
internal state as the configuration file of the previous Section 6.2.2. A single cell-veto event handler
realizes the set of Coulomb four-body factors that relate to non-excluded cells with respect to the
induced active dipole’s cell. While in the previous section the number of event handlers using a
cell-based bounding potential must exceed the number of target dipoles in non-excluded cells, here
a single cell-veto event handler is sufficient for an arbitrary number of target dipoles in different
non-excluded cells. This allows to implement ECMC with a complexity of O(1) per event.
The configuration file resembles that of Section 6.2.2 except that the coulomb_cell_bounding

event handler is replaced by a coulomb_cell_veto event handler (using the cell-veto event handler
of Section 4.1.5). Also a different tagger is used because the in-state of the cell-veto event handler
only consists of the branch of the induced active dipole (see the discussion in Section 6.1.3 where the
cell-veto algorithm was used in order to simulate two charged point masses).

6.2.4 Coulomb Dipole Factors, Alternating Movement Modes

In contrast to all other simulations of this chapter with only a single independent active point mass at
any time, the dipole_motion.ini configuration file of this section alternates between two movement
modes: In the leaf mode, one of the four point masses is independent active (the name results from
point masses being stored on the leaf nodes of the trees in the tree state handler). In the root mode, the
point masses of one dipole move as a rigid block. Hence, the entire dipole is independent active (see
Fig. 6.3). Only considering the root mode does not yield an ergodic Markov chain, as discussed in
Section 4.2.5. The orientation and shape of any dipole would remain unchanged throughout the run.
Since the dipoles are represented as trees in JF-V1.0, both modes are easily implemented. In the

leaf mode, the Coulomb four-body factor of all four point masses is realized by a coulomb_leaf
event handler that uses the same bounding potential as the coulomb_nearby event handlers of the
previous Sections 6.2.2 and 6.2.3. The harmonic and repulsive pair factor are also treated in the same
manner as before. The root mode, in turn, is patterned after the simulation of two point masses (see
Section 6.1.1). Both the four-body Coulomb factor and the repulsive pair factor yield an effective
two-dipole factor realized by the event handlers of Section 4.1.6. Confirmed events of these just switch
the independent active dipole. (The inner-dipole harmonic factor potential is constant and therefore
not considered in root mode.) The create and trash decision is straightforward because all factor events
induce the trashing of factor events in the scheduler and their following recomputation.
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Figure 6.3: Two alternating movement modes used to simulate two finite-size dipoles. (a): In the leaf mode,
a single leaf unit (which corresponds to a single point mass) is independent active with the velocity v. This
induces a movement of the corresponding dipole barycenter with v/2. (b): In the root mode, one of the two root
units (which corresponds to a dipole barycenter) is independent active with velocity v. Both of its leaf units
then have an induced velocity v. This figure has been published in [39] (see publication in Appendix B).

The switches between the leaf and root modes are formulated as leaf_to_root and root_to_leaf
events, respectively. For this, two instances of the mode-switching event handler of Section 4.2.5 with
different mode-switching directions are used. The tag lists of the corresponding taggers trash factor
events of the old mode, and entail the computation of factor events for the new mode. Also, the event
responsible for the next mode switch is computed afterwards.

After a mode-switching event, all taggers connected to factor types of the new mode are additionally
activated, whereas the ones of the old mode are deactivated (as introduced in Section 3.5, deactivated
taggers do not generate any in-state identifiers). By this, the end-of-chain event handler can still create
events in equally spaced intervals: After an end-of-chain event, all factor events are recomputed which
is encoded in the corresponding tag list. However, it is not clear which mode is currently active and,
e.g., whether a coulomb_leaf or a coulomb_root event has to be computed. The create tag list just
contains both tags instead and exploits that only one of the corresponding taggers is active.
Introducing different movement modes may influence the mixing dynamics of ECMC and lead

to a faster decorrelation. (Note however that this was not yet studied in detail). At the same time,
the non-ergodic moves might necessitate a special care on when to sample an observable. The
configuration file of this section samples after fixed sampling durations (as all other configuration files
of this chapter). Hence, sample values are also computed during the non-ergodic parts of the Markov
chain. (This could be a reason for the observed increased standard errors of this method in Fig. 6.2.)

6.3 Interacting Water Molecules (SPC/Fw Model)

The configuration files of this section implement the ECMC sampling of the Boltzmann distribution
for two water molecules using the SPC/FW model [82] that was previously studied with ECMC [7].3

A single water molecule is represented by a composite point object with three charged point masses in
the tree state handler. One of the point masses is positively charged and represents the oxygen. The
two others are negatively charged and represent the hydrogens.

The SPC/Fw model uses the displaced-even-power potential of Section 4.1.1.3 with the parameters
pDEPP = 2, r0 = 1.012Å, and kDEPP = 529.581 kcal mol−1 Å−2 between the hydrogens and oxygens
within a water molecule. The three point masses of a water molecule interact via the bending potential
of Section 4.1.1.5 with the parameters kBending = 75.90 kcal mol−1 rad−2 and φ0 = 113.24°, which

3 The used configuration files are located in the src/config_files/2018_JCP_149_064113/water directory of
JF-V1.0.
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induces fluctuations around the given equilibrium angle φ0 in the samples of the simulation. Moreover,
two oxygens in different water molecules interact via the Lennard-Jones potential of Section 4.1.1.2
with the parameters kLJ = 0.6217012 kcal mol−1 and σLJ = 3.165492Å. The Lennard-Jones potential
is truncated beyond 9.0Å. Finally, point masses in different water molecules interact via the merged-
image Coulomb potential of Section 4.1.1.4. Here, the charges of the hydrogens are chosen as 0.41e,
and the ones of the oxygens as −0.82e (with e as the elementary charge). All simulations of this
section were carried out in a three-dimensional cubic simulation box with side length L = 10Å and
periodic boundary conditions. The temperature was chosen as 300 K (i.e., β = 1.679 mol kcal−1).

In all of the configuration files one of the six point masses is active with a velocity parallel to one of
the Cartesian coordinate axes. (Of course, one could set up a similar rigid movement of entire water
molecules as in Section 6.2.4). The TwoLeafUnitEventHandler of Section 4.1.2 realizes a single
harmonic pair factor with the displaced-even-power-law factor potential. The corresponding tagger
then relies on two of these event handlers because if one of the oxygens is independent active, two
harmonic pair factors have to be considered. The bending three-body factor with the bending factor
potential is realized in an event handler that dynamically constructs a piecewise constant bounding
potential (see Section 4.1.5). The event handler is initialized with a lifting scheme to carry out the
lifting move in its out-state computation. (Note that the lifting probabilities are uniquely determined
in this case because there are only three point masses involved.)

The following sections discuss how the remaining Coulomb and Lennard-Jones factors are treated.
The generation of the in-state identifiers in the taggers and the determination of which events should
be trashed and recomputed is very similar to the previous simulations of two finite-size dipoles in
Section 6.2. This is therefore not explained in detail again. Statistically equivalent output is obtained for
pair factors for the Coulomb and inverted Lennard-Jones potentials in Section 6.3.1. In Section 6.3.2,
molecular six-body Coulomb factors are considered and the Lennard-Jones factor is associated with a
cell-based bounding potential. Section 6.3.3 implements the cell-veto algorithm for the molecular
Coulomb factor and inverts the Lennard-Jones potential. The final Section 6.3.4 implements the
cell-veto algorithm for both the six-body molecular Coulomb factor and the Lennard-Jones pair factor
between the oxygens. All of the simulations sample the minimum separation between the two oxygens
(see Fig. 6.4 for a comparison of the results of the different simulations).

It is noteworthy that all the following simulations only considered the Lennard-Jones interaction
between the nearest images of the oxygens in the two water molecules. (That is because the event
handlers explicitly compute the minimum separation.) The simulations do therefore not use the
aforementioned truncation after 9Å. It was tested that this does not lead to considerable changes of
the results. (It would surely be possible to implement such a truncation in JF. This would require new
event handlers. For the sake of simplicity, these are not included in this thesis and JF-V1.0.)

6.3.1 Coulomb Pair Factors, Lennard-Jones Inverted

In the coulomb_power_bounded_lj_inverted.ini configuration file the Lennard-Jones pair
factor is realized by the TwoLeafUnitEventHandler of Section 4.1.2, which internally uses the
inverted Lennard-Jones potential. The event handler only computes an event if one of the involved
oxygens is independent active.

The three Coulomb pair factors that involve the currently independent active point mass are realized in
three instances of the TwoLeafUnitBoundingPotentialEventHandler of Section 4.1.3. This event
handler uses both the merged-image Coulomb potential and its bounding potential of Section 4.1.1.4.
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Figure 6.4: Cumulative histogram π(|rOO |) of the minimum pair separations between the nearest images
of the two oxygens in different water molecules using the SPC/Fw model [82]. The simulations used a
three-dimensional cubic simulation box with periodic boundary conditions. Moreover, π(|rOO | < 2.9Å)
including standard errors is shown for each simulation method. The obtained values and their standard errors
agree well with the weighted average of all values within at most two times their respective standard errors.
1 : Reversible Markov-chain Monte Carlo. 2 : Method of Section 6.3.1. 3 : Method of Section 6.3.2. 4 :
Method of Section 6.3.3. 5 : Method of Section 6.3.4. A modified version of this figure has been published
in [39] (see publication in Appendix B). Note especially that the published version of this figure contained a
typo in the result of the first method. This is going to be corrected in the next version available online.

6.3.2 Molecular Coulomb Factors, Lennard-Jones Cell-Bounded

The coulomb_power_bounded_lj_cell_bounded.ini configuration file implements molecular
six-body Coulomb factors by summing the involved Coulomb pair potentials. This factor is therefore
very similar to the Coulomb dipole factor of the Sections 6.2.2 and 6.2.3 and is realized by an event
handler that is analogous to the coulomb_nearby event handler in these sections.
Although the Lennard-Jones potential is inverted, it is associated with a cell-based bounding

potential in this section. For this, a cell-occupancy system that only tracks the oxygen identifiers
is set up. This is achieved by introducing an indicator charge that is only non-zero for the oxygens.
The cell-occupancy system is then initialized with the name of this charge, which leads to the fact
that only the oxygens are tracked. The derivative bounds used in the cell-based bounding potential
are computed by an inner-point estimator (see Section 4.1.1.6). Naturally, the usage of a cell-based
bounding potential induces nearby, surplus and cell-boundary events.

6.3.3 Molecular Coulomb Cell-Veto, Lennard-Jones Inverted

The coulomb_cell_veto_lj_inverted.ini configuration file uses the same factors as the previous
Section 6.3.2. The Lennard-Jones pair factor is treated like in Section 6.3.1. As a preliminary step
toward the treatment of several interactions via the cell-veto algorithm in the following section, the
molecular Coulomb factors are realized in a cell-veto event handler. Hence, a cell-occupancy system
in the tag activator tracks the barycenters of the water molecules. The cell-based derivative bounds
are computed in the dipole-inner-point estimator of Section 4.1.1.6. The surplus and nearby molecular
Coulomb factors are treated in a similar way as in the corresponding simulation for finite-size dipoles
in Section 6.2.3. (Similar to Section 6.1.3, the simulation is slowed down due to a lot of rejected
cell-veto events which increases the standard error in Fig. 6.4. That is because the simulation was not
run for longer times to keep the simulation times in a reasonable limit.)
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6.3.4 Molecular Coulomb Cell-Veto, Lennard-Jones Cell-Veto

The final coulomb_cell_veto_lj_cell_veto.ini configuration file uses, for illustration purposes,
two cell-occupancy systems and two cell-veto event handlers for both the molecular Coulomb factor
and the Lennard-Jones pair factor. The cell-occupancy systems and estimators are chosen as in the
previous two sections. Setting up the cell-veto algorithm twice with two different cell-occupancy
systems also implies two sets of nearby and surplus event handlers, as well as two cell-boundary event
handlers. This example showcases the flexibility of the activator, which can use several different
cell-occupancy systems during one simulation. If desired, the internal states can even use different
underlying cell systems. (The standard error in Fig. 6.4 is again increased due to the high number of
rejected cell-veto events, similar to the previous Section 6.3.3).

Note, as a final remark, that the strengths of the cell-veto algorithm are exploited when the number
of water molecules is increased. Furthermore, the simulations using the cell-veto algorithm in this
chapter are considerably sped-up if no time-slicing is performed after unconfirmed events (see the
discussion in Section 3.7). This acceleration of the corresponding simulations were already observed
in first enhancements of JF-V1.0 that resign from the time-slicing after unconfirmed events (and
therefore do not lead to unnecessary trashing and recomputations of events). These enhancements are
going to be included in the next versions of JF.
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CHAPTER 7

Conclusion

This thesis started with an introduction into the event-chain Monte Carlo (ECMC) algorithm and
demonstrated how it constructs an irreversible rejection-free continuous-time Markov chain. For this,
the factorized Metropolis filter, the lifting framework, and the event-driven implementation were
discussed. Additionally, the cell-veto algorithm was introduced. This algorithm allows to compute the
next event that interrupts the piecewise non-interacting time-evolution of ECMC in O(1) operations.
Due to its irreversible nature, ECMC simulations were shown to often equilibrate faster than

simulations that construct a reversible Markov chain. In particular, ECMC simulations solved the
puzzle about the precise nature of the melting phase transition of two-dimensional hard disks after 49
years. Previous studies using both molecular dynamics simulations or other Monte Carlo approaches
were not able to achieve that. This shows the strong potential of the ECMC algorithm and justifies
the expectation that it may prove useful for simulations of all-atom systems including the long-range
Coulomb potential: a domain that has traditionally been reserved to molecular dynamics. ECMC may
also help to gain new insights in other areas, e.g., spin models or problems in quantum-field theory.
The strong potential of the ECMC algorithm motivates the implementation of a general-purpose

application that implements it in a way that it can treat a wide range of different systems. This is
precisely the intention of the JeLLyFysh (JF) application. Its design was introduced in this thesis
and in the complementing publication [39] (see publication in Appendix B). Built on the mediator
design pattern, the application systematically formulates the entire time evolution of ECMC in terms
of events. Here, both factors and pseudo-factors yield events. Factor events are required by ECMC to
satisfy the global-balance condition. In contrast, events of the newly introduced pseudo-factors have
no incidence on this condition. Instead, they permit JF to represent an entire run of the application in
terms of events and include, for example, start-of-run, end-of-run, sampling, and end-of-chain events
(which are necessary to construct an ergodic Markov chain).

The mediator of JF contains the main iteration loop of ECMC that proceeds from one event to the
next. For this, it uses the different elements of JF: Event handlers compute events, whose candidate
event times are compared in the scheduler. Only the out-state of the event with the shortest candidate
event time changes the global state, which is stored in the state handler. The activator determines the
event handlers that have to compute events at the beginning of each iteration. Also, it yields the events
which became invalid at the end of an iteration after the global state was changed. The input-output
handler inserts information into the application and creates output. In JF, all of the mentioned elements
are defined in an abstract way to ensure a general implementation of the time evolution of ECMC.
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Chapter 7 Conclusion

Since JF is an open-source project that is publicly available on GitHub, users can study, execute,
modify, and distribute the fully documented source code. Modifications can be fed back into the
project and contributions are encouraged. By this, JF is intended to grow into a widely used basis
code that hopefully becomes useful for researchers in different fields of computational science.

In order to showcase the flexibility and potential of the application, this thesis explained in detail how
the different elements are implemented for all-atom simulations in the first version of the application
JF-V1.0. (Also, the thesis gave hints which parts can even be reused for other models.) This allowed
for simulations of long-range interacting systems in a number of worked-out examples ranging from
charged atoms to dipoles to water molecules.

For the first version of the application, JeLLyFysh-Version1.0 (JF-V1.0), consistency has been the
main concern and the implemented code has not yet been optimized. It is entirely written in the Python
language and is compatible with any interpreter that supports Python 3.5 and higher. (This includes,
of course, the appropriate versions of CPython, but also PyPy in version 7 and higher [83]. PyPy uses
a just-in-time compiler that leads to significant speed improvements over CPython in the presented
simulation examples.) Considerable speed-up can certainly be obtained by rewriting time-consuming
parts of the application in compiled C/C++ codes, which includes in particular the methods of the
potentials that are included in JF-V1.0.
Further tasks for future versions of the JF application were mentioned at the appropriate places

throughout this thesis. A major priority is certainly that unconfirmed events are unnecessarily
time-sliced, which leads to superfluous trashing and recomputing of candidate events. Moreover,
future versions should include the presented straightforward implementation of an arbitrary number
nac > 1 of simultaneously active particles only taking part in distance-dependent interaction.

An arbitrary number nac > 1 will enable full parallel implementations of ECMC on multiprocessor
machines. The details of the parallel algorithm, however, have still to be studied further. As a
first step to multi-process ECMC, JF-V1.0 already implements the parallel computation of events
in separate processes, which is, however, at present rather slow due to the required inter-process
communication. The outstanding challenge of JF in its future versions is therefore to bring the full
power of parallelization and of multi-process ECMC to real-world applications.
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APPENDIX A

List of Implemented Taggers

This appendix lists all taggers that are implemented in JF-V1.0. These are used in the tag activator
(see Section 3.5). Furthermore, an explanation on how these taggers generate the in-state identifiers
for their event handlers in the yield_identifiers_send_event_time method is given. The only
argument of this method is the extracted active global state, that is, the part of the global state that
appears in the global lifting state (see Section 3.2).
The taggers of JF-V1.0 are specifically implemented for the tree state handler. The active global

state is given by root cnodes of branches, where all cnodes in the branches contain an active unit. All
unit identifiers that appear in the active global state are unique. Taggers may use an internal state. In
JF-V1.0, these are given by cell-occupancy systems (see Section 3.5.1).

• NoInStateTagger:
Contains a single event handler and returns None as the in-state identifier for it. This implies
that the event handlers’ send_event_time method requires no arguments. An example for
such an event handler is the end-of-chain event handler of Section 4.2.3.

• FactorTypeMapInStateTagger:
This special tagger can only be used if the tree state handler contains a state that consists of
an arbitrary number of identical trees representing composite point objects of height at most
two (see Section 5.1). The tagger reads identifier sets of factors between point masses in
two different composite point objects from a file, and extrapolates these to factors between
all composite point objects. (The identifier sets correspond to the index sets IM of factors
introduced in Section 2.3.) When the in-state identifiers are requested, all identifier sets that
include a currently active point mass are generated. (The number of event handlers in the tagger
should be chosen accordingly). This general tagger can be used with any event handler realizing
factors of Section 4.1 that is not connected to a cell system (the taggers suited for these event
handlers are treated below).

• ActiveRootUnitInStateTagger:
Generates the identifier of the root cnode of every branch in the extracted global state when
the in-state identifiers are requested. This is used by event handlers that require the tree of an
entire composite point object, which is either independent or induced active, to compute the
candidate event time. An example for such an event handler is the mode switching event handler
of Section 4.2.5.

89



Appendix A List of Implemented Taggers

• CellBoundingPotentialTagger:
Uses a cell-occupancy system to generate the in-state identifiers. Iterates over all identifiers
of active units and their active cells that are stored in the cell-occupancy system via the
yield_active_cells method. It then generates the pairs of identifiers consisting of the
respective active unit’s identifier, and one by one the identifiers in non-excluded cells with respect
to the active cell. The number of event handlers in the tagger should be chosen accordingly. This
tagger is used with the event handlers of Sections 4.1.3 and 4.1.5 that use cell-based bounding
potentials (see Section 4.1.1.6).

• CellVetoTagger:
Uses a cell-occupancy system to generate the in-state identifiers. Here, it generates all active
unit identifiers that are stored in the internal state. The number of event handlers in the tagger
should be chosen accordingly. This tagger is used with the event handlers of Sections 4.1.4 and
4.1.5 that implement the computation of cell-veto events.

• ExcludedCellsTagger:
Uses a cell-occupancy system to generate the in-state identifiers. Iterates over all identifiers
of active units and their active cells that are stored in the cell-occupancy system via the
yield_active_cells method. It then generates the pairs of identifiers consisting of the
respective active unit’s identifier, and one by one the identifiers in excluded cells with respect
to the active cell. The number of event handlers in the tagger should be chosen accordingly.
The event handlers used in this tagger must therefore be able to handle in-states that consist of
branches of two of the stored identifiers in the cell-occupancy system. This tagger allows, for
example, to generate in-state identifiers where a cell-based bounding potential would diverge.

• SurplusCellsTagger:
Uses a cell-occupancy system to generate the in-state identifiers. Iterates over all identifiers of
active units that are stored in the cell-occupancy system via the yield_active_cells method.
It then generates the pairs of identifiers consisting of the respective active unit’s identifier, and
one by one the surplus identifiers generated by the yield_surplus method. The number of
event handlers in the tagger should be chosen accordingly. The event handlers used in this
tagger must therefore be able to handle in-states that consist of branches of two of the stored
identifiers in the cell-occupancy system. This tagger allows, for example, to generate in-state
identifiers that correspond to the surplus factors that are not included in the set of factors treated
by a cell-veto event.

• CellBoundaryTagger: Uses a cell-occupancy system to generate the in-state identifiers. For
this, it generates all active unit identifiers that are stored in the internal state. This tagger is used
with the cell-boundary event handler of Section 4.2.1 whose events are required to keep the
internal state consistent with the global state.
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JeLLyFysh-Version1.0 – a Python application for all-atom event-chain Monte Carlo

arXiv: 1907.12502 [physics.comp-ph] (2019)

This article presents JeLLyFysh-Version1.0, the general-purpose Python application for event-chain
Monte Carlo (ECMC) that was introduced in detail in this thesis (see Chapters 3–6). It introduces the
architecture of the application that closely mirrors the mathematical formulation of ECMC. Moreover,
a number of worked-out examples for systems of atoms, dipoles, or water molecules are discussed.

At the submission date of this thesis, this article was in review for publication.
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bBethe Center for Theoretical Physics, University of Bonn, Nussallee 12, 53115 Bonn,
Germany

cH. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL,
United Kingdom

dCNRS UMR7083, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris,
France

eMax-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, 01187 Dresden,
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Abstract

We present JeLLyFysh-Version1.0, an open-source Python application for event-
chain Monte Carlo (ECMC), an event-driven irreversible Markov-chain Monte
Carlo algorithm for classical N -body simulations in statistical mechanics, bio-
physics and electrochemistry. The application’s architecture closely mirrors the
mathematical formulation of ECMC. Local potentials, long-ranged Coulomb in-
teractions and multi-body bending potentials are covered, as well as bounding
potentials and cell systems including the cell-veto algorithm. Configuration files
illustrate a number of specific implementations for interacting atoms, dipoles,
and water molecules.

1. Introduction

Event-chain Monte Carlo (ECMC) is an irreversible continuous-time Markov-
chain algorithm [5, 28] that often equilibrates faster than its reversible counter-
parts [30, 19, 22, 23, 24]. ECMC has been successfully applied to the classic N -
body all-atom problem in statistical physics [4, 17]. The algorithm implements
the time evolution of a piecewise non-interacting, deterministic, system [6]. Each
straight-line, non-interacting leg of this time evolution terminates in an event,
defined through the event time at which it takes place and through the out-state,
the updated starting configuration for the ensuing leg. An event is chosen as the
earliest of a set of candidate events, each of which is sampled using information
contained in a so-called factor. The entire trajectory samples the equilibrium
probability distribution.
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Figure 1: ECMC time evolution. At events Ea, Eb, Ec, . . . , a number of factors
({a1, a2, . . . , a5}, {b1, b2, . . . , b6}, . . .) are activated. For each leg ((Ea → Eb), (Eb → Ec),
. . . ), each factor must at all times independently accept the continued non-interacting evo-
lution, and must determine a candidate event time at which this is no longer the case. The
earliest candidate event time (which determines the veto) and its out-state yield the next
event (the event Eb is triggered by a2). In JF-V1.0, after committing an event to the global
state, candidate events with certain tags are trashed (tags t 1, t 3 at Eb) or maintained active
(tags t 2, t 4 at Eb), and others are newly activated. JF introduces non-confirmed events
and also pseudo-factors, which complement the factors of ECMC, and which may also trigger
events.

ECMC departs from virtually all Monte Carlo methods in that it does not
evaluate the equilibrium probability density (or its ratios). In statistical physics,
ECMC thus computes neither the total potential (or its changes) nor the to-
tal force on individual point masses. Rather, the decision to continue on the
current leg of the non-interacting time evolution builds on a consensus which
is established through the factorized Metropolis algorithm [28]. A veto puts an
end to the consensus, triggers the event, and terminates the leg (see Fig. 1).
In the continuous problems for which ECMC has been conceived, the veto is
caused by a single factor.

The resulting event-driven ECMC algorithm is reminiscent of molecular
dynamics, and in particular of event-driven molecular dynamics [1, 2, 3], in
that there are velocity vectors (which appear as lifting variables). These ve-
locities do not correspond to the physical (Newtonian) dynamics of the sys-
tem. ECMC differs from molecular dynamics in three respects: First, ECMC
is event-driven, and it remains approximation-free, for any interaction poten-
tial [32], whereas event-driven molecular dynamics is restricted to hard-sphere
or piecewise constant potentials. (Interaction potentials in biophysical simula-
tion codes have been coarsely discretized [8] in order to fit into the event-driven
framework [36, 33, 34].) Second, in ECMC, most point masses are at rest at
any time, whereas in molecular dynamics, all point masses typically have non-
zero velocities. In ECMC, an arbitrary fixed number of (independently) active
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point masses (with non-zero velocities) and identical velocity vectors for all of
them may be chosen. In JF-V1.0, as in most previous applications of ECMC,
only a single independent point mass is active. The ECMC dynamics is thus
very simple, yet it mixes and relaxes at a rate at least as fast as in molecu-
lar dynamics [19, 23, 24]. Third, ECMC by construction exactly samples the
Boltzmann (canonical) distribution, whereas molecular dynamics is in principle
micro-canonical, that is, energy-conserving. Molecular dynamics is thus gener-
ally coupled to a thermostat in order to yield the Boltzmann distribution. The
thermostat there also eliminates drift in physical observables due to integration
errors. ECMC is free from truncation and discretization errors.

ECMC samples the equilibrium Boltzmann distribution without being itself
in equilibrium, as it violates the detailed-balance condition. Remarkably, it es-
tablishes the aforementioned consensus and proceeds from one event to the next
with O(1) computational effort even for long-range potentials, as was demon-
strated for soft-sphere models, the Coulomb plasma [18, 19], and for the simple
point-charge with flexible water molecules (SPC/Fw) model [39, 9].

JeLLyFysh (JF) is a general-purpose Python application that implements
ECMC for a wide range of physical systems, from point masses interacting with
central potentials to composite point objects such as finite-size dipoles, water
molecules, and eventually peptides and polymers. The application’s architec-
ture closely mirrors the mathematical formulation that was presented previously
(see [9, Sect II]). The application can run on virtually any computer, but it also
allows for multiprocessing and, in the future, for parallel implementations. It
is being developed as an open-source project on GitHub. Source code may
be forked, modified, and then merged back into the project (see Section 6 for
access information and licence issues). Contributions to the application are
encouraged.

The present paper introduces the general architecture and the key fea-
tures of JF. It accompanies the first public release of the application, JeL-
LyFysh-Version1.0 (JF-V1.0). JF-V1.0 implements ECMC for homogeneous,
translation-invariant N -body systems in a regularly shaped periodic simulation
box and with interactions that can be long-ranged. In addition, the present
paper presents a cookbook that illustrates the application for simplified core ex-
amples that can be run from configuration files and validated against published
data [9]. A full-scale simulation benchmark against the Lammps application is
published elsewhere [35].

The JF application presented in this paper is intended to grow into a basis
code that will foster the development of irreversible Markov-chain algorithms
and will apply to a wide range of computational problems, from statistical
physics to field theory [13]. It may prove useful in domains that have tradi-
tionally been reserved to molecular dynamics, and in particular in the all-atom
Coulomb problem in biophysics and electrochemistry.

The content of the present paper is as follows: The remainder of Section 1
discusses the general setting of JF as it implements ECMC. Section 2 describes
its mediator-based architecture [10]. Section 3 discusses how the eponymous
events of ECMC are determined in the event handlers of JF. Section 4 presents
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system definitions and tools, such as the user interface realized through configu-
ration files, the simulation box, the cell systems, and the interaction potentials.
Section 5, the cookbook, discusses a number of worked-out examples for pre-
viously presented systems of atoms, dipoles or water molecules with Coulomb
interactions [9]. Section 6 discusses licence issues, code availability and code
specifications. Section 7 presents an outlook on essential challenges and a pre-
view of future releases of the application.

1.1. Configurations, factors, pseudo-factors, events, event handlers

In ECMC, configurations c = {s1, . . . , si, . . . , sN} are described by continu-
ous time-dependent variables where si(t) represents the position of the ith of N
point masses (although it may also stand for the continuous angle of a spin on a
lattice [30]). JF is an event-driven implementation of ECMC, and it treats point
masses and certain collective variables (such as the barycenter of a composite
point object) on an equal footing. Rather than the time-dependent variables
si(t), its fundamental particles (Particle objects) are individually time-sliced
positions (of the point masses or composite point objects). Non-zero velocities
and time stamps are also recorded, when applicable. The full information can
be packed into units (Unit objects), that are moved around the application (see
Section 1.2).

Each configuration c has a total potential U({s1, . . . , sN}), and its equilib-
rium probability density π is given by the Boltzmann weight

π({s1, . . . , sN}) = exp [−βU({s1, . . . , sN})] , (1)

that is sampled by ECMC (see [9]). The total potential U is decomposed as

U({s1, . . . , sN}) =
∑

M∈M
UM ({si : i ∈ IM}), (2)

and the Boltzmann weight of eq. (1) is written as a product over terms that
depend on factors M , with their corresponding factor potentials UM . A factor
M = (IM , TM ) consists of an index set IM and of a factor type TM , and M is
the set of factors that have a non-zero contribution to eq. (2) for some configu-
ration c. In the SPC/Fw water model, for example, one factor M with factor
type TM = Coulomb might describe all the Coulomb potentials between two
given water molecules, and the factor index set IM would contain the identifiers
(indices) of the involved four hydrogens and two oxygens (see Section 5.3).

ECMC relies on the factorized Metropolis algorithm [28], where the move
from a configuration c to another one, c′, is accepted with probability

pFact(c→ c′) =
∏

M

min [1, exp (−β∆UM )] , (3)

where ∆UM = UM (c′M ) − UM (cM ). Rather than to evaluate the right-hand
side of eq. (3), the product over the factors is interpreted as corresponding to a
conjunction of independent Boolean random variables

XFact(c→ c′) =
∧

M∈M
XM (cM → c′M ). (4)
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In this equation, XFact(c → c′) is “True” (the proposed Monte Carlo move is
accepted) if the independently sampled factorwise Booleans XM are all “True”.
Equivalently, the move c → c′ is accepted if it is independently accepted by
all factors. This realizes the aforementioned consensus decision (see Fig. 1).
For an infinitesimal displacement, the random variable XM of only a single
factor M can be “False”, and the factor M vetoes the consensus, creates an
event, and starts a new leg. In this process, M requires only the knowledge
of the factor in-state (based on the configuration cM , and the information on
the move), and the factor out-state (based on c′M ) provides all information
on the evolution of the system after the event. The event is needed in order
to enforce the global-balance condition (see Fig. 2a). In this process, lifting
variables [7], corresponding to generalized velocities, allow one to repeat moves
of the same type (same particle, same displacement), as long as they are accepted
by consensus.1 Physical and lifting variables build the overcomplete description
of the Boltzmann distribution at the base of ECMC, and they correspond to
the global physical and global lifting states of JF, its global state.

Figure 2: Factors and pseudo-factors. (a): In-state and sampled out-state (each with two
active units) for a three-unit factorM (implementing, for example, the inter-molecular bending
potential UM of Section 4.4.5). (b): In- and out-states for a cell-boundary event handler
realizing a pseudo-factor. Times at which units are time-sliced are indicated. tout is the event
time.

JF, the computer application, is entirely formulated in terms of events, be-
yond the requirements of the implemented event-driven ECMC algorithm. The
application relies on the concept of pseudo-factors, which complement the fac-
tors in eq. (2), but are independent of potentials and without incidence on the
global-balance condition (see Fig. 2b). In JF, the sampling of configuration
space, for example, is expressed through events triggered by pseudo-factors.
Pseudo-factors also trigger events that interrupt one continuous motion (one
“event chain” [5]) and start a new one. Even the start and the end of each run
of the application are formulated as events triggered by pseudo-factors.

In ECMC, among all factors M in eq. (2), only those for which UM changes
along one leg can trigger events. In JF, these factors are identified in a separate
element of the application, the activator (see Section 2.4), and they are realized

1For concreteness, the lifting variables in this paper are referred to as “velocities”, although
they are not derived from mechanical equations of motions and their conservation laws. The
concept of lifting variables is more general [7].
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in yet other elements, the event handlers. An event handlers may require an
in-state. It then computes the candidate event time and its out-state (from the
in-state, from the factor potential, and from random elements). The complex
operation of the activator and the event handlers is organized in JF-V1.0 with
the help of a tag activator, with tags essentially providing finer distinction than
the factor types TM . A tagger identifies a certain pool of factors, and also
singles out factors that are to be activated for each tag. The triggering of an
event associated with a given tag entails the trashing of candidate events with
certain tags, while other candidate events are maintained (see Fig. 1). Also,
new candidate events have to be computed by event handlers with given tags.
This entire process is managed by the tag activator.

1.2. Global state, internal state

In the event-driven formulation of ECMC, a point mass with identifier σ
and with zero velocity is simply represented through its position, while an active
point mass (with non-zero velocity) is represented through a time-sliced position
sσ(tσ), a time stamp σ(tσ) and a velocity vσ:

sσ(t) =

{
sσ if vσ = 0

sσ(tσ) + (t− tσ)vσ else (active point mass)
. (5)

An active point mass thus requires storing of a velocity vi and of a time stamp
tσ, in addition to the time-sliced position sσ(tσ). In JF, the global state traces
all the information in eq. (5). It is broken up into the global physical state,
for the time-sliced positions sσ, and the global lifting state, for the non-zero
velocities vσ and the time stamps tσ.

JF represents composite point objects as trees described by nodes. Leaf
nodes correspond to the individual point masses. A tree’s inner nodes may rep-
resent, for example, the barycenters of parts of a molecule, and the root node
that of the entire molecule (see Fig. 3a-b). The velocities inside a composite
point object are kept consistent, which means that the global lifting state in-
cludes non-zero velocities and time stamps of inner and root nodes. The storing
element of the global state in JF is the state handler (see Section 2.3). The
global state is not directly accessed by other elements of the application, but
branches of the tree can be extracted (copied) temporarily, together with their
unit information. Independent and induced units differentiate between those
that appear in ECMC and those that are carried along in order to assure con-
sistency (see Fig. 3).

For internal computations, the global state may be supplemented by an in-
ternal state that is kept, not in the state handler, but in the activator part
of the application (see Section 2.4). In JF-V1.0, the internal state consists in
cell-occupancy systems, which associate identifiers of composite point objects
or point masses to cells. (An identifier is a generalized particle index with, in
the case of a tree, a number of elements that correspond to the level of the
corresponding node.) In JF, cell-occupancy systems are used for book-keeping,
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Figure 3: Tree representation of composite point objects in JF-V1.0. (a): Molecule with
functional parts. (b): Tree representation, with leaf nodes for the individual atoms and
higher-level nodes for barycenters. Nodes each have a particle (a Particle object) containing
a position vector and charge values. A unit (a Unit object), associated with a node, copies out
the particle’s identifier and its complete global-state information. (c): Internal representation
of composite point objects with separate cell systems for particle identifiers on different levels.
On the leaf level, only one kind of particles is tracked.

and also for cell-based bounding potentials. JF-V1.0 requires consistency be-
tween the time-sliced particle information and the units. This means that the
time-sliced position sσ(tσ) and the time-dependent position sσ(t) in eq. (5) be-
long to the same cell (see Fig. 2b). Several cell-occupancy systems may coexist
within the internal state (possibly on different tree-levels and with different cell
systems, see Fig. 3c and Section 5.3.4). ECMC requires time-slicing only for
units whose velocities are modified. Beyond the consistency requirements, JF-
V1.0 performs time-slicing also for unconfirmed events, that is, for triggered
events for which, after all, the out-state continues the straight-line motion of
the in-state (see Section 3.1.2).

1.3. Lifting schemes

In its lifted representation of the Boltzmann distribution, ECMC introduces
velocities for which there are many choices, that is, lifting schemes. The num-
ber of independent active units can in particular be set to any value nac > 1
and then held fixed throughout a given run. This generalizes easily from the
known nac = 1 case [12]. A simple nac-conserving lifting scheme uses a factor-
derivative table (see [9, Fig. 2]), but confirms the active out-state unit only if
the corresponding unit is not active in the in-state (its velocity is None). For
|IM | > 3, the lifting scheme (the way of determining the out-state given the
in-state) is not unique, and its choice influences the ECMC dynamics [9]. In
JF-V1.0, different lifting-scheme classes are provided in the JF lifting pack-
age. They all construct independent-unit out-state velocities for independent
units that equal the in-state velocities. This appears as the most natural choice
in spatially homogeneous systems [5].
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1.4. Multiprocessing

In ECMC, factors are statistically independent. In JF, therefore, the event
handlers that realize these factors can be run independently on a multiprocessor
machine. With multiprocessor support enabled, candidate events are concur-
rently determined by event handlers on separate processes, using the Python
multiprocessing module. Candidate event times are then first requested in
parallel from active event handlers, and then the out-state for the selected event.
Given a sufficient number of available processors, out-states may be computed
for candidate events in advance, before they are requested (see Section 2.1).
The event handlers themselves correspond to processes that usually last for the
entire duration of one ECMC run. When not computing, event handlers are ei-
ther in idle stage waiting to compute an candidate event time or in suspended
stage waiting to compute an out-state.

Using multiple processes instead of threads circumvents the Python global
interpreter lock, but the incompressible time lag due to data exchange slows
down the multiprocessor implementation of the mediator with respect to the
single-processor implementation.

1.5. Parallelization

ECMC generalizes to more than one independent active unit, and a sequen-
tial, single-process ECMC computation remains trivially correct for arbitrary
nac (although JF-V1.0 only fully implements the nac = 1 case). The relative
independence of a small number of independent active units in a large system,
for 1 � nac � N , allows one to consider the simultaneous committing in dif-
ferent processes of npr events to the shared global state. (A conflict arises if
this disagrees with what would result by committing them in a single process.)
If npr � N , conflicts between processes disappear (for short-range interacting
systems) if nearby active units are treated in a single process (see Fig. 4a). The
parallel implementation of ECMC, for short-range interactions, is conceptually
much simpler than that of event-driven molecular dynamics [29, 14, 20], and it
may well extend to long-range interacting system.

An alternative type of parallel ECMC, domain decomposition into nac stripes,
was demonstrated for two-dimensional hard-spheres systems, and considerable
speed-up was reached [16]. Here, stripes are oriented parallel to the velocities,
with one active unit per stripe. Stripes are isolated from each other by immobile
layers of spheres [16], which however cause rejections (or reversals of one or more
components of the velocity). The stripe decomposition eliminates all scheduling
conflicts. As any domain decomposition [29], it is restricted to physical models
with short-range interactions. It is not implemented in JF-V1.0 (see Fig. 4b).

2. JF architecture

JF adopts the design pattern based on a mediator [10], which serves as the
central hub for the other elements that do not directly connect to each other.
In this way, interfaces and data exchange are particularly simple. The mediator
design maximizes modularity in view of future extensions of the application.
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Figure 4: Parallel ECMC with local potentials (interaction range d). (a): Multiprocess version
with nac � N active units. Nearby active units avoid conflict in a single process. (b):
Domain decomposition with separated stripes. Particles in between stripes are immobile.
The separation region (of width ∆) is wider than d, so that all conflict between stripes is
avoided (see [16]).

2.1. Mediator

The mediator is doubled up into two modules (with SingleProcessMediator
and MultiProcessMediator classes). The runmethod of either class is called by
the executable run.py script of the application, and it loops over the legs of the
continuous-time evolution. The loop is interrupted when an EndOfRun exception
is raised, and a post run method is invoked. For the single-process mediator,
all the other elements are instances of classes that provide public methods. In
particular, the mediator interacts with event handlers. For the multi-process
mediator, each event handler has its own autonomous iteration loop and runs
in a separate process. It exchanges data with the mediator through a two-way
pipe. Receiving ends on both sides detect when data is available using the pipe’s
recv methods.

In JF-V1.0, the same event-handler classes are used for the single-process
and multi-process mediator classes. The multi-process mediator achieves this
through a monkey-patching technique. It dynamically adds a run in process
method to each created instance of an event handler, which then runs as an
autonomous iteration loop in a process and reacts to shared flags set by the
mediator. The multi-process mediator in addition decorates the event handler’s
send event time and send out state methods so that output is not simply
returned (as it is in the single-process mediator) but rather transmitted through
a pipe. Only the mediator accesses the event handlers, and these re-definitions
of methods and classes (which abolish the need for two versions for each event-
handler class) are certain not to produce undesired side effects.

On one leg of the continuous-time evolution, the mediator goes through nine
steps (see Fig. 5). In step 1, the active global state (that part of the global state
that appears in the global lifting state) is obtained from the state handler. (In
the tree state handler of JF-V1.0, branches of independent units are created
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for all identifiers that appear in the lifting state.) Knowing the preceding event
handler (which initially is None) and the active global state, it then obtains from
the activator, in step 2, the event handlers to activate together with their in-
state identifiers. For this, the activator may rely on its internal state, but not on
the global state, to which it has no access. In step 3, the corresponding in-states
are extracted (that is, copied) from the state handler. In step 4, candidate event
times are requested from the appropriate event handlers and pushed into the
scheduler’s push event method. In step 5, the mediator obtains the earliest
candidate event time from the scheduler’s get succeeding event method and
and asks its event handler for the event out-state (step 6) to be committed to the
global state (step 7). The activator, in step 8, determines which candidate events
are to be trashed (in JF-V1.0: based on their tags), that is, which candidate
event times are to be eliminated from the scheduler. Also, the activator collects
the corresponding event handlers, as they become available to determine new
candidate events. In the optional final step 9, the mediator may connect (via
the input–output handler) to an output handler, depending on the preceding
event handler. A mediating method defines the arguments sent to the output
handler (for example the extracted global state), and considerable computations
may take place there.

Figure 5: JF architecture, built on the mediator design pattern. The iteration loop takes the
system from one event to the next (for example from Ea to Eb in Fig. 1). All elements of
JF interact with the mediator, but not with each other. The multi-process mediator interacts
with event handlers running on separate processes, and exchanges data via pipes.

The multi-process mediator uses a single pipe to receive the candidate event
time and the out-state from an event handler. In order to distinguish the re-
ceived object, the mediator assigns four different stages to the event handlers
(idle, event time started, suspended, out state started stages). The as-
signed stage determines which flags can be set to start the send event time or
send out state methods. It also determines the nature of the data contained
in the pipe. In the idle stage, the mediator can set the starting flag after which
the event handler will wait to receive the in-state through the pipe. This starts
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the event time started stage during which the event handler determines the
next candidate event time and places it into the pipe. After the mediator has
recovered the data from the pipe, it places the event handler into the suspended
stage. If requested (by flags), the event handler can then either compute the
out-state (out state started stage), or else revert to the event time started
stage.

The strategy for suspending an event handler or for having it start an out-
state computation (before the request) can be adjusted to the availability of
physical processors on the multi-processor machine. However, in JF-V1.0, the
communication via pipes presents a computational bottleneck.

2.2. Event handlers

Figure 6: Basic stages of event handlers for factors and pseudo-factors (stages 1 and 3 relevant
for the multi-process mediator only). In the idle and suspended stages, the event handler is
halted (via flags controlled by the multi-process mediator), thus liberating resources for other
candidate-event-time requests. With the multi-process mediator, candidate out-states may be
computed before the out-state request arrives.

Event handlers (instances of a number of classes that inherit from the ab-
stract EventHandler class) provide the send event time and send out state
methods that return candidate events. These candidate events either become
events of a factor or pseudo-factor or they will be be trashed.2

When realizing a factor or a pseudo-factor, event handlers receive the in-
state as an argument of the send event time method. The send out state
method then takes no argument. In contrast, event handlers that realize a set of
factors or pseudo-factors request candidate event times without first specifying
the complete in-state, because the element of the set that triggers the event is
yet unknown at the event-time request (see Section 3.2.2 for examples of event
handlers that realize sets of factors). The send event time method then takes
the part of the in-state which is necessary to calculate the candidate event time.
Also, it may return supplementary arguments together with the candidate event
time, which is used by the mediator to construct the full in-state. The in-state
is then an argument of the send out state method, as it was not sent earlier.

2A candidate event time may stem from a bounding potential, and not be confirmed for
the factor potential. In JF-V1.0, unconfirmed and confirmed events are treated alike.
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In JF-V1.0, each run requires a start-of-run event handler (an instance of
a class that inherits from the abstract StartOfRunEventHandler class), and
it cannot terminate properly without an end-of-run event handler. Section 3
discusses several event-handler classes that are provided.

2.3. State handler

The state handler (an instance of a class that inherits from the abstract
StateHandler class) is the sole separate element of JF to access the global
state. In JF-V1.0, the global physical state (all positions of point masses and
composite point objects) is contained in an instance of the TreePhysicalState
class represented as a tree consisting of nodes (each node corresponds to a Node
object). Each node contains a particle (a Particle object) which holds a time-
sliced position. In JF-V1.0, each leaf node may in addition have charges as a
Python dictionary mapping the name of the charge onto its value.

Figure 7: Inner storage of the tree state handler and example of its extract from global state
method, applied to the global state of Fig. 3b.

Each tree is specified through its root node. Root nodes can be iterated over
(in JF-V1.0, they are members of a list). Each node is connected to its parent
and its children, which can also be iterated over. In JF-V1.0, the children
are again members of a list. These lists imply unique identifiers of nodes and
their particles as tuples. The first entry of the tuple gives a node’s root node
list index, followed by the indices on lower levels down to the node itself (see
Fig. 3).

The global lifting state is stored in JF-V1.0 in a Python dictionary mapping
the implicit particle identifier onto its time stamp and its velocity vector. This
information is contained in an instance of the TreeLiftingState class. Both
the physical and lifting states are combined in the TreeStateHandler which
implements all methods of a state handler.

To communicate with other elements of the JF application (such as the event
handlers and the activator) via the mediator, the state handler combines the
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information of the global physical and the global lifting state into units (that
is, temporary Unit objects, see Fig. 7). A given physical-state and lifting-state
information for a node in the state handler is mirrored (that is copied) to a unit
containing its implicit identifier, position, charge, velocity and time stamp. All
other elements can access, modify, and return units. This provides a common
packaging format across JF. The explicit identifier of a unit allows the program
to integrate changed units into the state handler’s global state.

In the tree state handler of JF-V1.0, the local tree structure of nodes can
be extracted into a branch of cnodes, that is, nodes containing units.3 Each
event handler only requires the global state reduced to a single factor in order
to determine candidate event times and out-states. As a design principle in JF-
V1.0, the event handlers keep the time-slicing of composite point objects and
its point masses consistent. Information sent to event handlers via the mediator
is therefore structured as branches, that is the information of a node with its
ancestors and descendants. The state handler’s extract from global state
method creates a branch for a given identifier of a particle by constructing a
temporary copy of the immutable node structure of the state handler using
cnodes. Out-states of events in the form of branches can be committed to the
global state using the insert into global state method.

The extract active global statemethod, the first of two additional meth-
ods provided by the state handler, extracts the part of the global state which
appears in the global lifting state. The tree state handler constructs the min-
imal number of branches, where each node contains an active unit, so that all
implicit identifiers appearing in the global lifting state are represented. The ac-
tivator may then determine the factors which are to be activated. The method
is also used to time-slice the entire global state (see Section 3.2.2). Second,
the extract global state method extracts the full global state. (For the tree
state handler of JF-V1.0, this corresponds to a branch for each root node.)
This method does not copy the positions and velocities.

In JF-V1.0, the global physical state is initialized via the input handler
within the input–output handler (see Section 2.6). The initial lifting state,
however, is set via the out-state of the start-of-run event handler, which is com-
mitted to the global state at the beginning of the program (see Section 3.2.2).
This means that, in JF-V1.0, the lifting state cannot be initialized from a file.

2.4. Activator

The activator, a separate element of the JF application, is an instance of a
class that inherits from the abstract Activator class. At the beginning of each
leg, the activator provides to the mediator the new event handlers which are
to be run, using the get event handlers to run method. (As required by the
mediator design pattern, no data flows directly between the activator and the

3The distinction between particles and units, as well as between nodes and cnodes stresses
that the state handler can only be accessed by the mediator, although information on the
physical and the lifting state must of course travel throughout the application.
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event handlers, although it initially obtains their references, and subsequently
manages them.) The activator also returns associated in-state identifiers of
particles within the global state. The extracted parts of the global state of
these are needed by the event handlers to compute their candidate event time
(the identifier may be None if no information is needed). Finally, it readies
for the mediator a list of trashable candidate events at the end of each leg
in the get trashable events method, once the mediator has committed the
preceding event to the global state via the state handler.

Figure 8: Tag activator, and its complex interaction with the mediator. It readies event
handlers and in-state identifiers, provides internal-state information for an out-state request,
and identifies the trashable candidate events, as a function of the preceding event.

In JF-V1.0, the activator is an instance of the TagActivator class (that
inherits from the Activator class). The tag activator’s operations depend on
the interdependence of tags of event handlers and their events. Event handlers
receive their tag by instances of classes located in the activator and derived from
the abstract Tagger class that are called “taggers”.

A tagger centralizes common operations for identically tagged event handlers
(see Fig. 8). On initialization, the tagger receives its tag (a string-valued tag
attribute) and an event handler (that is, a single instance), of which it creates
as many identical event-handler copies as needed (using the Python deepcopy
method). Each tagger provides a yield identifiers send event timemethod
which generates in-state identifiers based on the branches containing indepen-
dent active units (this means that the taggers are implemented especially for the
TreeStateHandler, the TagActivator however is not restricted to this since
it just transmits the extracted active global state). These in-states are passed
(after extracting the part of the global state related to the identifiers from the
state handler) to the send event time method of the tagger’s event handlers.
The number of event handlers inside a tagger should meet the maximum num-
ber of events with the given tag simultaneously in the scheduler. In this paper,
event handlers (and their candidate events) are referred to by tags, although in
JF they do not have the tag attribute of their taggers.

On initialization, a tagger also receives a list of tags for event handlers
that it creates, as well as a list of tags for event handlers that need to be
trashed. The tag activator converts this information of all taggers into its in-
ternal create taggers and trash taggers dictionaries. Additionally, the tag
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activator creates an internal dictionary mapping from an event handler onto the
corresponding tagger ( event handler tagger dictionary).

A call of the get event handlers to run method is accompanied by the
event handler which created the preceding event and by the extracted active
global state. The event handler is first mapped onto its tagger. The taggers
returned by the create taggers dictionary then generate the in-states identi-
fiers, which are returned together with the corresponding event handlers (in a
dictionary). For the initial call of the get event handlers to run method no
information on the preceding event handler can be provided. This is solved by
initially returning the start-of-run event handler. Similarly the trash taggers
dictionary is used on each call of get trashable events. The corresponding
event handlers are then also liberated, meaning that the activator can return
them in the next call of the get event handlers to run method.4 For this, the
activator internally splits the pool of all event handlers of a given tag internally
into those with a scheduled candidate event and the ones that are available to
take on new candidate events.

The activator also maintains the internal state. In JF-V1.0, the internal
state consists in cell-occupancy systems. Therefore, the internal state is an
instance of a class that inherits from the CellOccupancy class, which itself
inherits from the abstract InternalState class. Taggers may refer to internal-
state information to determine the in-states of their event handlers. The cell-
occupancy system does not double up on the information available in the state
handler. It keeps track of the identifier of a particle (which may correspond
to a point mass or a composite point object), but does not store or copy the
particle itself (see Section 4.3). The mediator can access the internal state
via the get info internal state method (see Fig. 8). To acquire consistency
between the global state and the internal state (and between a particle and its
associated unit), a pseudo-factor triggers an event for each active unit tracked
by the cell-occupancy system that crosses a cell boundary (see Fig. 2b). The
internal state is updated in each call of the get event handlers to runmethod.

2.5. Scheduler

The scheduler is an instance of a class inheriting from the abstract Scheduler
class. It keeps track of the candidate events and their associated event-handler
references. Its get succeeding event method selects among the candidate
events the one with the smallest candidate event time, and it returns the ref-
erence of the corresponding event handler. Its push event method receives a
new candidate event time and event-handler reference. Its trash event method
eliminates a candidate event, based on the reference of its event handler. In JF-
V1.0, the scheduler is an instance of the HeapScheduler class. It implements
a priority queue through the Python heapq module.

4The action of the create taggers and trash traggers dictionaries can be overruled with
the concept of activated and deactivated taggers. Event handlers out of deactivated taggers
are not returned to the mediator.
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2.6. Input–output handler

The input–output handler is an instance of the InputOutputHandler class.
The input–output handler connects the JF application to the outside world, and
it is accessible by the mediator. The input–output handler breaks up into one in-
put handler (an instance of a class that inherits from the abstract InputHandler
class) and a possibly empty list of output handlers (instances of classes that
inherit from the abstract OutputHandler class). These are accessed by the me-
diator only via the input–output handler. Output handlers can also perform
significant calculations.

The input handler enters the initial global physical state into the application.
JF-V1.0 provides an input handler that enters protein-data-bank formatted
data (.pdb files) as well as an input handler which samples a random initial
state. The initial state (constructed as a tree for the case of the tree state
handler) is returned when calling the read method of the input–output handler,
which calls the read method of the input handler.

The output handlers serve many purposes, from the output in .pdb files to
the sampling of correlation functions and other observables, to a dump of the
entire run. They obtain their arguments (for example the entire global state) via
its write method. The write method of the input–output handler receives the
desired output handler as an additional argument through the mediating meth-
ods of specific event handlers. These are triggered for example after a sampling
or an end-of-run event. The corresponding event handlers are initialized with
the name of their output handlers.

3. JF event-handler classes

Event handler classes differ in how they provide the send event time and
send out state methods. Event handlers split into those that realize factors
and sets of factors and those that realize pseudo-factors and sets of pseudo-
factors. The first are required by ECMC while the second permit JF to represent
the entire run in terms of events.

3.1. Event handlers for factors or sets of factors

Event handlers that realize a factor M , or a set of factors are implemented
in different ways depending on the analytic properties of the factor potential
UM and on the number of independent active units.

3.1.1. Invertible-potential event handlers

In JF, an invertible factor potential UM (an instance of a class that inher-
its from the abstract InvertiblePotential class) has its event rate integrated
in closed form along a straight-line trajectory (see Fig. 1). The sampled cu-
mulative event rate (U+

M in [9, eq. (45)]) provides the displacement method.
Together with the time stamp and the velocity of the active unit, this deter-
mines the candidate event time. In JF-V1.0, the two-leaf-unit event handler
(an instance of the TwoLeafUnitEventHandler class) is characterized by two
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independent units at the leaf level. It realizes a two-particle factor with an
invertible factor potential. The in-state (an argument of the send event time
method) is stored internally, and it remains available for the subsequent call of
the send out state method. Because of the two independent units, the lifting
simply consists in these two units switching their velocities (using the internal
exchange velocity method) and keeping the velocities of all induced units

consistent.

3.1.2. Event handlers for factors with bounding potential

For a factor potential UM that is not inverted (by choice or by necessity
because it is non-invertible), the cumulative event rate U+

M is unavailable (or
not used) and so is its displacement method. Only the derivative method
is used. To realize such a factor without an inverted factor potential, an event
handler then uses the displacementmethod of an associated bounding potential
whose event rate at least equals that of UM and that is itself invertible. A non-
inverted UM may be associated with more than one bounding potential, each
corresponding to a different event handler (the molecular Coulomb factors in
Section 5.2 associate the Coulomb factor potential in the same run with different
bounding potentials). In JF-V1.0, a number of event handlers are instances of
classes that inherit from the EventHandlerWithBoundingPotential class, and
that realize factors with bounding potentials. Each of these event handlers
translates the sampled displacement of the bounding potential into a candidate
event time. On an out-state request (via the send out state method), the
event handler confirms the event with probability that is given by the ratio
of the event rates of the factor potential and the bounding potential. The
out-state consists of independent units together with their branches of induced
units. For two independent units, the lifting limits itself to the application of a
local exchange velocitymethod, which exchanges independent-unit velocities
and enforces velocities for the induced units. For more independent units, the
out-state calculation requires a lifting. For an unconfirmed event, no lifting
takes place. In JF-V1.0, confirmed and unconfirmed event have time-sliced
out-states. Inefficient treatment of unconfirmed events is the main limitation of
this version of the application.

A special case of a bounding potential is the cell-based bounding potential
which features piecewise cell-bounded event rates. The two independent units
are localized within their respective cells, and the bounding potential’s rate is
for all positions of the units larger than the factor potential event rate. In
JF-V1.0, the constant cell-bounded event rate is determined for all pairs of
cells on initialization (see Section 4.4.4). The resulting displacement may move
the independent active unit outside its cell. The proposed candidate event will
then however be preempted by a cell-boundary event and then trashed (see
Section 3.2.1).

3.1.3. Cell-veto event handlers

Cell-veto event handlers (instances of a number of classes that inherit from
the abstract CellVetoEventHandler class) realize sets of factors, rather than a
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single factor. The factor in-states (for each element of the set) are not transmit-
ted with the candidate-event-time request. Instead, the branch of the indepen-
dent active unit is an argument of the send event time method. The sampled
factor in-state is transmitted with the out-state request. The cell-veto event
handler implements Walker’s algorithm [37] in order to sample one element in
the set of factors in O(1) operations.

Cell-veto event handlers are instantiated with an estimator (see Section 4.6).
In addition, they obtain a cell system which is read in through its initialize
method (see Section 4.2). The estimator provides upper limits for the event rate
(in the given direction of motion) for the independent active unit anywhere in
one specific cell (called “zero-cell”, see Section 4.3), and for a target unit in any
other cell, except for a list of excluded cells. These upper limits can be translated
from the zero-cell to any other active-unit cell, because of the homogeneity of
the simulation box. In JF-V1.0, the cell systems for the cell-veto event handler
can be on any level of the particles’ tree representation (see Section 5.3.4, where
a molecule-cell system tracks individual water molecules on the root level, while
a oxygen-cell system tracks only the leaf nodes corresponding to oxygens).

A Walker sampler is an instance of the Walker class in the event handler
package. It provides the total event rate (total rate), that for a homogeneous
periodic system is a constant throughout a run. On a candidate-event-time re-
quest, a cell-veto event handler computes a displacement, but no longer through
the displacement method of a factor potential or a bounding potential, but
simply as an exponential random number divided by the total event rate. (The
particularly simple send event time method of a cell-veto event handler is im-
plemented in the abstract CellVetoEventHandler class.) (see [9] for a full
description). The Walker sampler’s sample cell method samples the cell of
the target unit in O(1). It is returned, together with the candidate event time,
as an argument of the send event time method. The out-state request is ac-
companied by the branch of the independent unit in the target cell, if it exists.
Confirmation of events and, possibly, lifting are handled as in Section 3.1.2.

3.2. Event handlers for pseudo-factors or sets of pseudo-factors

The pseudo-factors of JF unify the description of the ECMC time evolution
entirely in terms of events. The distinction between event handlers that realize
pseudo-factors and those that realize sets of pseudo-factors remains crucial. In
the former, the factor in-state is known at the candidate-event-time request. It
is transmitted at this moment and kept in the memory of the event handler for
use at the out-state request. For a set of pseudo-factors, the factor in-state can
either not be specified at the candidate-event-time request, or would require
transmitting too much data (one in-state per element of the set). It is therefore
transmitted later, with the out-state-request (see Fig. 9).

3.2.1. Cell-boundary event handler

In the presence of a cell-occupancy system, JF-V1.0 preserves consistency
between the tracked particles of the global physical state and the corresponding
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units (which must belong to the same cell). This is enforced by a cell-boundary
event handler, an instance of the CellBoundaryEventHandler class. This event
handler has a single independent unit and realizes a pseudo-factor with a single
identifier. A cell-boundary event leads to the internal state to be updated (see
Section 2.4).

On instantiation, a cell-boundary event handler receives a cell system. (Each
cell-occupancy system requires one independent cell-boundary event handler.)
A candidate-event-time request by the mediator is accompanied by the in-state
contained in a single branch and a single unit on the level tracked by the cell-
occupancy system. An out-state request is met with the cell-level-unit’s position
corresponding to the minimal position in the new cell.

3.2.2. Event handlers for sampling, end-of-chain, start-of-run, end-of-run

Sampling event handlers are instances of classes that inherit from the ab-
stract SamplingEventHandler class. Sampling event handlers are expected to
produce output (they inherit from the EventHandlerWithOutputHandler class
and are connected, on instantiation, with their own output handler which is used
in the mediating method of this event handler). Several sampling event han-
dlers may coexist in one run. Their output handler is responsible for computing
physical observable at the sampling event time (see Section 2.6). JF-V1.0 im-
plements sampling events as the time-slicing of all the active units. A sampling
event handler thus realizes a set of single-unit pseudo-factors, and the in-state
is not specified at the candidate-event-time request. In JF-V1.0, the candidate
event times of the sampling event handler are equally spaced. The out-state
request is accompanied by branches of all independent active units, which are
then all time-sliced simultaneously. Sampling candidate events are normally
trashed only by themselves and by an end-of-run event.

Figure 9: Set of pseudo-factors realized by the end-of-chain event handler. (a): Set of end-
of-chain pair pseudo-factors for four point masses coupling the final active unit of the old
chain and the beginning active unit of the new chain. (b): At the event time, the realized
pseudo-factor with the incoming active unit and the outgoing unit is known. (c): A new event
chain is started. The outgoing active unit is shown.

End-of chain event handlers are instances of classes that inherit from the
abstract EndOfChainEventHandler class. They effectively stop one event chain
and reinitialize a new one. This is often required for the entire run to be
irreducible (see [9]). The end-of-chain event handler clearly realizes a set of
pseudo-factors, rather than a single pseudo-factor (see Fig. 9a). An end-of-
chain event handler implements a method to sample a new direction of motion.
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In addition, it implements a method to determine a new chain length (that gives
the time of the next end-of-chain event) and, finally, the identifiers of the next
independent active cnodes. For this, the end-of-chain event handler is aware of
all the possible cnode identifiers (see Section 4.2).

On an event-time request, the end-of-chain event handler returns the next
candidate event time (computed from the new chain length) and the identifier
of the next independent active cnode. The out-state request is accompanied by
the current and the succeeding independent active units and their associated
branches (see Fig. 9b). For the out-state, the event handler determines the next
direction of motion (see Fig. 9c).

A start-of-run event handler (an instance of a class that inherits from the
abstract StartOfRunEventHandler class) is the sole event handler whose pres-
ence is required. The start-of-run event is the first one to be committed to the
global state, because its candidate event time is set equal to the initial time of
the run (usually zero) and because the activator will initially only activate the
start-of-run event handler. The start-of-run event handler serves two purposes.
First, it sets the initial lifting state. Second, the activator uses the start-of-run
event handler as an entry point. Its tag (the start of run tag in the config-
uration files of Section 5) is then used to determine the events that should be
activated and created thereafter.

The end-of-run event handler (an instance of a class that inherits from the
abstract EndOfRunEventHandler class) terminates a run by raising an end-of-
run exception and thus ends the mediator loop. An end-of-run event handler
is usually connected, on instantiation, with its own output handler. In JF-
V1.0, its send event time method returns the total run-time, which transits
from the configuration file. On the send out state request, all active units are
time-sliced. The end-of-run output handler may further process the global state
which it receives via the mediating method of the end-of-run event handler.

3.3. Event handlers for rigid motion of composite point objects, mode switching

The event handlers of JF-V1.0 are generally suited for the rigid motion
of composite point objects (root mode), that is, for independent non-leaf-node
units (as implemented in Section 5.2.4). This is possible because all event han-
dlers keep the branches of independent units consistent. As the subtree-node
units of an independent-unit node move rigidly, the displacement is not irre-
ducible. Mode switching into leaf mode (with single active leaf units) then be-
comes a necessity in order to have all factors be considered during one run and
to assure the irreversibility of the implemented algorithm. In JF-V1.0, the cor-
responding event handlers are instances of the RootLeafUnitActiveSwitcher
class. On instantiation, they are specified to switch either from leaf mode to
root mode or vice versa.

These event handlers resemble the end-of-chain event handler, but only one
of them is active at any given time. They provide a method to sample the new
candidate event time based on the time stamp of the active independent unit at
the time of its activation. An out-state request from one of these event handlers
is accompanied by the entire tree of the current independent active unit of one
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mode and met with the tree of the independent active unit on the alternate
mode.

4. JF run specifications and tools

The JF application relies on a user interface to select the physical system
that is considered, and to fully specify the algorithm used to simulate it. Inside
the application, some of these choices are made available to all modules (rather
than having to be communicated repeatedly by the mediator). The application
also relies on a number of tools that provide key features to many of its parts.

4.1. Configuration files, logging

The user interface for each run of the JF application consists in a config-
uration file that is an argument of the executable run.py script.5 It specifies
the physical and algorithmic parameters (temperature, system shape and size,
dimension, type of point masses and composite point objects, and also factors,
factor potentials, lifting schemes, total run time, sampling frequency, etc).

A configuration file is composed of sections that each correspond to a class
requiring input parameters. The [Run] section specifies the mediator and the
setting. The ensuing sections choose the parameters in the init methods of
the mediator and of the setting. Each section contains pairs of properties and
values. The property corresponds to the name of the argument in the init
method of the given class, and its value provides the argument (see Fig. 12).
The content of the configuration file is parsed by the configparser module
and passed to the JF factory (located in the base.factory module) in run.py.
Standard Python naming conventions are respected in the classes built by the
JF factory, which implies the naming conventions in the configuration file (see
Section 6.3 for details). Within the configuration file, sections can be written in
any order, but their explicit nesting is not allowed. The nestedness is however
implicit in the structure of the configuration file.

The JF application returns all output via files under the control of output
handlers. Run-time information is logged (the Python logging module is used).
Logged information can range from identification of CPUs to the initialization
information of classes, run-time information, etc. Logging output (to standard
output or to a file) can take place on a variety of levels from DEBUG to INFO to
WARNING that are controlled through arguments of run.py. An identification
hash of the run is part of the logging output. It also tags all the output files so
that input, output and log files are uniquely linked (the Python uuid module is
used).

5Configuration files follow the INI-file format and, in JF, feature the extension .ini.
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4.2. Globally used modules

JF-V1.0 requires that all trees representing composite point objects are
identical and of height at most two. Furthermore, in the NV T physical en-
semble, the particle number, system size and temperature remain unchanged
throughout each run. After initialization, as specified in the configuration file,
these parameters are stored in the JF setting package and the modules therein,
which may be imported by all other modules, which can then autonomously con-
struct identifiers. Helper functions for periodic boundary conditions (if avail-
able) and for the sampling of random positions are also accessible.

JF-V1.0 implements hypercubic and hypercuboid setting modules. Both
settings define the inverse temperature and also the attributes of all possible
particle identifiers, which are broadcast directly by the setting package. In
contrast, the parameters of the physical system are accessed only using the
modules of the specific setting (for example the setting.hypercubic setting
module).6 The setting package and its modules are initialized by classes which
inherit from the abstract Setting class. The HypercuboidSetting class de-
fines only the hypercuboid setting, the HypercubicSetting class, however, sets
up both the hypercubic setting and the hypercuboid setting modules to-
gether with the setting package. This allows modules that are specifically
implemented for a hypercuboid setting to be used with the hypercubic setting.

Each setting can implement periodic boundaries, by inheriting from the ab-
stract PeriodicBoundaries class and by implementing its methods. Since many
modules of JF only rely on periodic boundaries but not on the specific setting,
the setting package gives also access to the initialized periodic boundary condi-
tions. Similarly, a function to create a random position is broadcast by the set-
ting package. All the configuration files in Section 5 are for a three-dimensional
cubic simulation box, that is, use the hypercubic setting with dimension = 3.

Additional useful modules are located in the JF base package. The abstract
Initializer class located in the initializer module enforces the implemen-
tation of an initialize method. This method must be called before other
public methods of the inheriting class. The strings module provides functions
to translate strings from snake to camel case and vice versa, as well as to trans-
late a package path into a directory path. Helper functions for vectors, such as
calculating the norm or the dot product, are located in the vectors module.

4.3. Cell systems and cell-occupancy systems

A cell-occupancy system is an instance of a class that inherits from the
abstract CellOccupancy class, located in the activator. Any cell-occupancy
system is associated with a cell system, itself an instance of a class that inherits
from the abstract Cells class.

In JF-V1.0, the cell system consists in a regular grid of cells that are re-
ferred to through their indices. Cells can be iterated over with the yield cells

6Attributes in the setting package are copied to the modules for convenience.
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Figure 10: Cell methods. (a): excluded cells, successor, cell min and cell max methods
required by the abstract Cells class. Horizontal and vertical directions are indexed as 0 and
1, respectively. (b): translate and relative cell methods (illustrated by vectors) required
by the PeriodicCells class, in addition to the methods of the Cells class. Periodic boundary
conditions are required, and the two blue cells are identical. The periodic-cell system’s origin
is given by the zero cell property.

method. For a given cell, the excluded cells are accessed by the excluded cells
method, the successor cell in a suitably defined direction by the successor
method and the lower and upper bound position in each direction through the
cell min and cell max methods (see Fig. 10a). Finally, the position to cell
method returns the cell for a given position. Cell systems with periodic bound-
ary conditions are described as periodic cell systems (instances of classes that
inherit from the abstract PeriodicCells class, which itself inherits from the
Cells class). Their zero cell property corresponds to the cell located at the
origin. Their relative cell method receives a cell and a reference cell, and
establishes equivalence between the relative and the zero-cell. The inverse to
this is the translate method (see Fig. 10b).

A cell-occupancy system (which is located in the activator) associates the
identifiers of cell-based particles and of surplus particles with a cell. It also
stores active cells, that is, cells that contain an active unit (see Fig. 11). Cell-
based and surplus particles in the state handler correspond to units with zero
velocity, so that there is no real distinction between units and particles for
them. The cell-occupancy system inherits from the abstract InternalState
class and therefore provides getitem and update methods. The former
returns a particle identifier based on a cell, whereas the latter updates the
cell occupancies based on the currently active units. This keeps the internal
state consistent with the global state. Moreover the cell-occupancy may iterate
over surplus particle identifiers via the yield surplus method. The active cells
and the corresponding identifiers of the active units are generated using the
yield active cells method (see Fig. 11).

JF-V1.0 implements the SingleActiveCellOccupancy class which features
only a single active cell and which keeps the active unit identifier among its
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Figure 11: Cell-occupancy system, an internal state of the activator, with active units ac-
counted for differently from surplus and cell-based particles. Only a fixed number of cell-based
particle identifiers are allowed per cell (here one per cell). Surplus-particle identifiers may be
iterated over from the outside of the cell-occupancy system with a yield surplus method.
In JF-V1.0, surplus particles form an internal dictionary mapping the cell onto the particle
identifier.

private attributes. The cell-based particle identifiers are stored in an internal
occupant list, and surplus-particle identifiers are stored in an internal surplus

dictionary mapping the cell indices onto the surplus-particle identifiers.
The stored cell-occupancy system can address different levels of composite

particles: one cell-occupancy system may track particles (and units) associated
to root nodes, and another one particles that go with leaf nodes. This is set
on initialization via the cell level property which equals the length of the
particle identifier tuple. The concerned cell system is itself set on initialization.
An indicator charge allows one to select specific particles on a given level for
tracking.

A single run can feature several internal states stored within the activator.
These instances may rely on different cell-occupancy systems and cell systems.
For consistency between internal states and the global state, each cell-occupancy
system requires its own cell-boundary event handler.

4.4. Inter-particle potentials and bounding potentials

In JF, potentials play a dual role, as factor potentials UM to event handlers
but also as bounding potentials for factor potentials UM . Potentials are located
in the JF potential package. They inherit from the abstract Potential class
and provide a derivative method. They may in addition inherit from the
abstract InvertiblePotential class, and must then provide a displacement
method. In JF-V1.0, derivatives and displacements are with respect to the
positive change of the active unit along one of the coordinates (indicated through
the direction). For a potential U(rij) and direction = 0, the derivative is
for example given by [∂/∂xiU(rij)].
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4.4.1. Inverse-power-law potential, Lennard-Jones potential

The inverse-power-law potential (an instance of the InversePowerPotential
class that inherits from the abstract InvertiblePotential class) concerns the
separation vector rij = rj − ri (without periodic boundary conditions, in d-
dimensional space) between a unit j and an active unit i as

U({i,j}, inv)(rij , ci, cj) = cicjk

(
1

|rij |

)p
. (6)

Here, k and p > 0 correspond to the prefactor and power parameters set on
initialization. The charges ci and cj are entered into the methods of the potential
as parameters charge one and charge two. This allows one instance of the
InversePowerPotential class to be used for different charges. The derivative
method is straightforward, while the displacement method distinguishes the
repulsive (cicjk > 0) and the attractive (cicjk < 0) cases.

The Lennard-Jones potential (an instance of the LennardJonesPotential
class) implements the Lennard-Jones potential

U({i,j},LJ)(rij) = kLJ

[(
σ

|rij |

)12

−
(

σ

|rij |

)6
]
, (7)

where rij = rj − ri is the separation vector (without periodic boundary con-
ditions, in d-dimensional space) between a unit j and an active unit i. and where
kLJ and σ correspond to the parameters prefactor and characteristic length
set on instantiation. This Lennard-Jones potential provides a straightforward
derivative method. Its displacement method relies on an algebraic inversion.

4.4.2. Displaced-even-power-law potential

An instance of the DisplacedEvenPowerPotential class that inherits from
the abstract InvertiblePotential class, the displaced-even-power-law poten-
tial, concerns the separation vector rij = rj − ri (without periodic boundary
conditions, in d-dimensional space) between a unit j and an active unit i

U({i,j}, depp)(rij) = kdepp (|rij | − r0)
p
, (8)

where kdepp > 0, p ∈ {2, 4, 6, . . . }, and r0, respectively, are the parameters
prefactor, power, and equilibrium separation parameters set on instantia-
tion. The derivative and displacement methods are provided analytically.

4.4.3. Merged-image Coulomb potential and bounding potential

An instance of the MergedImageCoulombPotential class that inherits from
the abstract Potential class, the merged-image Coulomb potential is defined
for a separation vector rij = rj − ri (with periodic boundary conditions, in
three-dimensional space) between a unit j and an active unit i as

UC(rij , ci, cj) =
∑

n

cicj/|rij + nL|, n ∈ Z3, (9)
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where L = (Lx, Ly, Lx) are the sides of the three-dimensional simulation box
with periodic boundary conditions. The conditionally convergent sum in eq. (9)
can be consistently defined in terms of “tin-foil” boundary conditions [21]. It
then yields an absolutely convergent sum, partly in real space and partly in
Fourier space (see [9, Sect. IIIA]),

ψ(rij , ci, cj) = cicj

[∑

n∈Z3

erfc(α|rij + nL|)
|rij + nL| +

4π

L3

∑

q 6=(0,0,0)

e−q
2/(4α2)

q2
cos (q · rij)


 ,

(10)
with α a tuning parameter and q = 2πm/L, m ∈ Z3. JF-V1.0 provides
this class for a cubic simulation box, with parameters that are optimized to
reach machine precision for its derivative method. Summations over n and m
are taken within spherical cutoffs, namely for all |n| ≤ position cutoff and
|m| ≤ fourier cutoff except that m = (0, 0, 0). (The potential in eq. (10)
differs from the tin-foil Coulomb potential in a constant self-energy term that
does not influence the derivatives.)

The merged-image Coulomb potential is not invertible. When it serves
as a factor potential, bounding potentials provide the required displacement
method. JF-V1.0 provides a merged-image Coulomb bounding potential as an
instance of the InversePowerCoulombBoundingPotential class, with

UC,Bounding = cicjkb/|rij,0|. (11)

Here, rij,0 is the minimum separation vector, that is, the vector between ri and
the closest image of rj under the periodic boundary conditions. (The merged-
image Coulomb bounding potential thus involves no sum over periodic images.)
The constant kb is chosen as

kb = max
r∈[−L/2,L/2]3

|r|3
x

∂ψ(r)

∂x
, (12)

so that the factor-potential event rate is bounded. A constant kb & 1.5836 (the
parameter prefactor) is appropriate for a cubic simulation box. The merged-
image Coulomb bounding potential is closely related to the inverse-power-law
potential of eq. (6) with p = 1, although the restriction to the minimum sepa-
ration vector makes that the latter cannot be used directly.

4.4.4. Cell-based bounding potential

A cell-based bounding potential is an instance of a class that inherits from
the abstract InvertiblePotential class. It bounds the derivative of the factor
potential inside certain cell regions by constants. These constants can be com-
puted analytically on demand or even sampled using a separate Monte Carlo
algorithm. On initialization, a cell-based bounding potential receives an estima-
tor (see Section 4.6). Also the information about the cell system is transmitted.
Then, the cell-based bounding potential iterates over all pairs of cells (making
use of periodic boundary conditions) and determines an upper and lower bound
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derivative for the factor units being in those cells for each possible direction
of motion using the estimator. Here, the cell-based bounding potential is not
applied to excluded cells, where the cell-bounded event rate diverges, is simply
too large, or otherwise inappropriate.

The constant-derivative bound leads to a piecewise linear invertible bound-
ing potential. The call of the displacement method is accompanied by the
direction of motion, the charge product, the sampled potential change and the
cell separation. In JF-V1.0, any cell-based bounding potential requires a cell-
boundary event handler, that detects when the displacement proposed by the
displacement method in fact takes place outside the cell for which it is com-
puted.

4.4.5. Three-body bending potential

The SPC/Fw water model of Section 5.3 includes a bending potential (an
instance of the BendingPotential class), which describes the fluctuations in
the bond angle within each molecule. For the three units i, j, and k within such
a molecule in three-dimensional space (with j being the oxygen), it is given by

U({i,j,k}, bending)(rij , rjk) =
1

2
kb

(
φ{i,j,k}(rij , rjk)− φ0

)2
. (13)

Here, φ{i,j,k}(rij , rjk) denotes the internal angle between the two hydrogen–
oxygen legs. The constants kb and φ0 are set on initialization of the potential
(see [9]). The derivativemethod is provided explicitly for this potential, which
is however not invertible.

In JF-V1.0, the associated bounding potential is constructed dynamically
by an event handler7 which dynamically constructs a piecewise linear bounding
potential. Here, the event handler speculates on a constant bounding event rate
through its position between two subsequent time-sliced positions of the active
unit: qbounding = max{q(r), q(r + v∆t)} + const where q(r) is the potential
derivative at r. The interval length |v∆t| and the constant offset are input
from the configuration file. Fine-tuning provides an efficient bounding potential
that does not under-estimate the event rate, yet limits the ratio of unconfirmed
events.

4.5. Lifting schemes

Event handlers with more than two independent units require a lifting scheme
(an instance of a class that inherits from the Lifting class). The event handler
calls a method of the lifting scheme to compute its out-state. At first, the event
handler prepares factor derivatives of relevant time-sliced units. The derivative
table (see [9, Figs 2 and 10]) is filled with unit identifiers, factor derivatives and
activity information through its insert method. Finally, the event handler calls

7instance of the FixedSeparationsEventHandlerWithPiecewiseConstantBoundingPotential
class
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the get active identifier method that returns the identifier of the next in-
dependent active unit. The lifting scheme’s reset method deletes the derivative
table. It is called before the first derivative is inserted. JF-V1.0 implements
the ratio, inside-first and outside-first lifting schemes for a single independent
active unit (see [9, Sect. IV]).

4.6. Estimator

Estimators (instances of a class that inherits from the abstract Estimator
class) determine upper and lower bounds on the factor derivative in a single
direction between a minimum and maximum corner of a hypercuboid for the
possible separations. For this, they provide the derivative bound method.
Both upper and lower bounds are useful when the potential can have either
positive and negative charge products (as happens for example for the merged-
image Coulomb potential as a function of the two charges). In general, an
estimator compares the factor derivatives for different separations in the hyper-
cuboid to obtain the bounds. These are corrected by a prefactor and optionally
by an empirical bound, which are set on instantiation (together with the factor
potential).

JF-V1.0 provides estimators which either regard regularly or randomly sam-
pled separations within the hypercuboid. The inner-point and boundary-point
estimators vary the separation evenly within the hypercuboid or on the edge
of the hypercuboid, respectively. For these separations, the factor potential
derivatives (optionally including charges) are compared. Two more estima-
tors consider the interaction between a charged active unit and two oppositely
charged target units within a dipole. Here, the factor derivative is summed for
the two possible active-target pairs. A Monte-Carlo estimator distributes both
the separation and the dipole orientation randomly. The dipole-inner-point es-
timator varies the separations evenly but aligns the dipole orientation along the
direction of the gradient of the factor derivative. The implemented estimators
are appropriate for the cookbook examples of Section 5, where the upper and
lower bounds on the factor derivatives (and equivalently on the event rates)
must be computed for a small number of cell pairs only.

5. JF Cookbook

The configuration files8 in JF-V1.0 introduce to the key features of the ap-
plication by constructing runs for two charged point masses, for two interacting
dipoles of charges, and for two interacting water molecules (using the SPC/Fw
model). All configuration files are for a three-dimensional cubic simulation box
with periodic boundary conditions, and they reproduce published data [9].

As specified in their [Run] sections, the configuration files use a single-
process mediator (an instance of the SingleProcessMediator class), and the

8Configuration files in the src/config files/2018 JCP 149 064113 directory tree are de-
scribed in this section.
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Figure 12: Configuration file coulomb atoms/power bounded.ini. (a): A typical init
method of a JF class. (b): Excerpts of the configuration file (some lines split for clarity).
Sections with properties and values that correspond to the argument names in the init
methods of JF classes.
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setting package is initialized by an instance of the HypercubicSetting class
(see for example Fig. 12). All configuration files in the directory use a heap
scheduler (an instance of the HeapScheduler class), a tree state handler (in-
stance of the TreeStateHandler class), as well as an tag activator (an instance
of the TagActivator class) in order to activate event handlers, trash candidate
events and prepare in-states.

The start of run, end of run, end of chain, and sampling event handlers
(that realize common pseudo-factors) are implemented in largely analogous sec-
tions across all the configuration files, although their parent sections (that define
the corresponding taggers) provide different tag lists for trashing and activation
of event handlers. The corresponding tagger sections are presented in detail in
Section 5.1.1, and only briefly summarized thereafter.

5.1. Interacting atoms

The configuration files in the coulomb atoms directory of JF-V1.0 im-
plement the ECMC sampling of the Boltzmann distribution for two identical
charged point masses. They interact with the merged-image Coulomb pair po-
tential and are described by a Coulomb pair factor. One of the two point
masses is active, and it moves either in +x, in +y, or in +z direction. Statisti-
cally equivalent output is obtained for the merged-image Coulomb pair potential
(the factor potential) associated with the inverse-power bounding potential (Sec-
tion 5.1.1), or else with a cell-based bounding potential, either realized directly
(Section 5.1.2), or through a cell-veto event handler (Section 5.1.3). Although
the configuration files use the language of Section 1.2 for the representation of
particles, all trees and branches are trivial, and each root node is also a leaf
node.

5.1.1. Atomic factors, inverse-power Coulomb bounding potential

The configuration file coulomb atoms/power bounded.ini implements a sin-
gle Coulomb pair factor with the merged-image Coulomb factor potential that
is associated with its inverse-power Coulomb bounding potential. The same
event handler realizes this factor for any separation of the point masses. The
activator requires no internal state.

Although it would be feasible to directly implement (that is, hard-wire) all
event handlers for this simple system, the tag activator is used. All event han-
dlers are thus accessed via taggers that are listed, together with their tags, in
the [TagActivator] section (see Fig. 13 for a tree representation of the sec-
tions). The coulomb tagger is an instance of the FactorTypeMapInStateTagger
class, indicating that its event handlers require a specific in-state created from
a pattern stored in a file indicated in the [FactorTypeMaps] section. This
pattern mirrors the factor index sets and factor types for a system with two
root nodes (see eq. (2)). The entry [0, 1], Coulomb in this file indicates that,
for two point masses, a Coulomb potential would act between particles 0 and
1. From this information, the tagger’s yield identifiers send event time
method generates all the in-state identifier for any number of point masses.
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Figure 13: Tree representation the sections in the configuration file
coulomb atoms/power bounded.ini. Only part of the tree is shown and names of event
handlers for sampling and end-of-chain are shortened. The children of the [TagActivator]
section correspond to all the declared taggers, which point towards sections for their
associated event-handler classes.

The [Coulomb] section specifies input for the coulomb tagger’s tag lists (the
creates list and the trashes list). Here, a coulomb event creates and trashes
only coulomb candidate events (see the configuration file of Section 5.3.1 for
different tag lists for the same coulomb event handlers).

The [Coulomb] section further specifies that the coulomb event handler
is an instance of the TwoLeafUnitBoundingPotentialEventHandler class and
that, for two point masses, only one coulomb event handler is needed. The
corresponding section9 specifies the factor potential to be an instance of the
MergedImageCoulombPotential class. It specifies the bounding potential as an
instance of the InversePowerCoulombBoundingPotential class. The sampling,
end of chain, start of run and end of run taggers are all instances of the
NoInStateTagger class (their event handlers require no in-state), and also pro-
vide their event handlers and their tag lists, which are then transmitted to
the tag activator. Each of these taggers’ yield identifiers send event time
methods yields the in-state identifiers needed by the taggers’ event handlers in
order to realize corresponding factors or pseudo-factors.

The configuration file’s [InputOutputHandler] section specifies the input-
output handler. It consists of the separation-output handler (an instance of
the SeparationOutputHandler class), which is connected to the sampling
event handler. In the present example, it samples the nearest-image sepa-
ration (under periodic boundary conditions) of any two point masses. The

9The [TwoLeafUnitBoundingPotentialEventHandler] section. The section name may be
replaced by an alias to respect the tree structure of the configuration file (see Section 5.2.1).
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initial global physical state is created randomly by the random-input han-
dler (an instance of the RandomInputHandler class). The configuration file
coulomb atoms/power bounded.ini reproduces published data (see Fig. 14, 2©).

Figure 14: Cumulative histogram of the pair separation |r12| (nearest image) for two
charges in a periodic three-dimensional cubic simulation box with periodic boundary con-
ditions (βc1c2 = 2, L = 1). 1©: Reversible Markov-chain Monte Carlo (see [9, Fig. 8]) 2©:
Method of Section 5.1.1 3©: Method of Section 5.1.2 4©: Method of Section 5.1.3 , each with
standard errors for π(|r12| < 0.6).

The configuration file coulomb atoms/power bounded.ini can be modified
for N point masses. In the [RandomInputHandler] section, the number of
root nodes must then equal N . In the [Coulomb] section, the number of event
handlers must be set to at least N−1 (this instructs the Coulomb tagger to deep-
copy the required number of event handlers). Without changing the factor-type
map with respect to the N = 2 case, each event handler which will be presented
with the correct in-state corresponding to a pair of units with one of them
being the active unit. The complexity of the implemented algorithm is O(N)
per event.

5.1.2. Atomic factors, cell-based bounding potential

The configuration file coulomb atoms/cell bounded.ini implements a sin-
gle Coulomb pair factor with the merged-image Coulomb potential, just as the
configuration file of Section 5.1.1. However, a cell-occupancy internal state as-
sociates the factor potential with a cell-based bounding potential. The target
(non-active) unit may be cell-based or surplus (see Fig. 11). The target unit
may also be in an excluded nearby cell of the active cell (see Fig. 10), for which
the cell-based bounding potential cannot be used. In consequence, three tag-
gers correspond to distinct event handlers that together realize the Coulomb
pair factor. The consistency requirement of JF-V1.0 assures that particles and
units are always associated with the same cell.

Taggers and their tags are listed in the [TagActivator] section. The
coulomb cell bounding tagger, for example, appears as an instance of the
CellBoundingPotentialTagger class. The coulomb cell bounding event han-
dler then realizes the Coulomb factor unless the cell of the target particle is
excluded with respect to the active cell and unless it is a surplus particle (in
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these cases the tagger does not generate any in-state for its event handler). Oth-
erwise, the Coulomb pair factor is realized by a coulomb surplus-tagged event
handler or by a coulomb nearby event handler. (For two units, as the active
unit is taken out of the cell-occupancy system, no surplus candidate events are
ever created.)

The cell-occupancy systems (an instance of the SingleActiveCellOccupancy
class) is also declared in the [TagActivator] section and further specified in
the [SingleActiveCellOccupancy] section. The associated cell system is de-
scribed in the [CuboidPeriodicCells] section. The internal state, set in the
[SingleActiveCellOccupancy] section, has no charge value. This indicates
that the identifiers of all particles at the cell level (here cell level = 1) are
tracked (see Section 5.3.2 for an example where this is handled differently).

The coulomb nearby tagger, an instance of the ExcludedCellsTagger class,
yields the identifiers of particles in excluded cells of the active cell, by iterating
over cells and by checking whether they contain appropriate identifiers. The
coulomb surplus tagger similarly relies on the yield surplus method of the
cell-occupancy system to generate in-states.

To keep the internal state consistent with the global state, a cell-boundary
event handler is used in the CellBoundaryTagger class (together, this builds
cell boundary candidate events). The cell-boundary tagger just yields the
active-unit identifier as the in-state used in the corresponding event handler.
The configuration file coulomb atoms/cell bounded.ini reproduces published
data (see Fig. 14, 3©).

To adapt the configuration file for N > 2 point masses (from the N = 2 case
that is provided), in the [RandomInputHandler], number of root nodes must
be set to N . The number of coulomb cell bounding, coulomb nearby, and
coulomb surplus event handlers must be increased. Surplus particles can now
exist. The number of event handlers to allow for depends on the cell system,
whose parameters must be adapted in order to limit the number of surplus
particles, and also to retain useful cell-based bounds for the Coulomb event
rates.

5.1.3. Atomic factors, cell-veto

The configuration file coulomb atoms/cell veto.ini implements a Coulomb
pair factor together with the merged-image Coulomb potential. A cell-occupancy
internal state is used. The Coulomb pair factor is then realized, among others,
by a cell-veto event handler, which associates the merged-image Coulomb po-
tential with a cell-based bounding potential.

All the Coulomb pair factors of the active particle with target particles that
are neither excluded nor surplus are taken together in a set of Coulomb factors,
and realized by a single coulomb cell veto event handler. The candidate event-
time can be calculated with the branch of the active unit as the in-state, which
is implemented in the CellVetoTagger class. (The cell-veto tagger returns the
identifier of the active unit.) The event handler returns the target cell (in which
the candidate unit is to be localized) together with the candidate event time.
The out-state request is accompanied by the branch of the target unit (if it
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exists), and the out-state computation is in analogy with the case studied in
Section 5.1.2.

The configuration file features the coulomb cell veto tag together with the
coulomb nearby, coulomb surplus, cell boundary, sampling, end of chain,
start of run, and end of run tags. The configuration file reproduces published
data (see Fig. 14, 4©).

To adapt the configuration file for N point masses, the number of root nodes
must be set to N in the [RandomInputHandler] section. The number of event
handlers for the coulomb nearby and coulomb surplus events might have to
be increased. However, a single cell-veto event handler realizes any number of
factors with cell-based target particles whereas in Section 5.1.2 each of them
required its own event handler.

5.2. Interacting dipoles

The configuration files in the dipoles directory of JF-V1.0 implement
the ECMC sampling of the Boltzmann distribution for two identical finite-size
dipoles, for a model that was introduced previously [9]. Point masses in dif-
ferent dipoles interact via the merged-image Coulomb potential (pairs 1 − 3,
1− 4, 2− 3, 2− 4 in Fig. 15). Point masses within each dipole interact with a
short-ranged potential (pairs 1 − 2 and 3 − 4). A repulsive short-range poten-
tial between oppositely charged atoms in different dipoles counterbalances the
attractive Coulomb potential at small distances (pairs 1− 4 and 2− 3).

Each dipole is a composite point object made up of two oppositely charged
point masses. It is represented as a tree with one root node that has two children.
The number of root nodes in the system is set in the [RandomInputHandler]
section of the configuration file, where the dipoles are created randomly through
the fill root node method in the DipoleRandomNodeCreator class. In the
setting package, the input handler specifies that there are two root nodes
(number of root nodes = 2). Each of them contains two nodes (which is coded
as number of nodes per root node = 2) and the number of node levels is two
(number of node levels = 2). As this numbers are set in the setting package,
all the JF modules can autonomously construct all possible particle identifiers.

Statistically equivalent output is obtained for pair factors for all interactions
(Section 5.2.1), for dipole–dipole Coulomb factors and their factor potential
associated with a cell-based bounding potential (Section 5.2.2), for dipole–dipole
Coulomb factors with the cell-veto algorithm (Section 5.2.3), and by alternating
between concurrent moves of the entire dipoles with moves of the individual
point masses (Section 5.2.4). The latter example showcases the collective-motion
possibilities of ECMC integrated into JF. All configuration files here implement
the short-ranged potential as an instance of the DisplacedEvenPowerPotential
class with power = 2 and the repulsive short-range potential as an instance of
the InversePowerPotential class with power = 6.

5.2.1. Atomic Coulomb factors

The configuration file dipoles/atom factors.ini implements for each con-
cerned pair of point masses a Coulomb pair factor, with the merged-image
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Figure 15: Cumulative histogram of the pair separation |r13| and |r14| (nearest image) for
two dipoles (see the inset) in a periodic three-dimensional cubic simulation box with periodic
boundary conditions (βcicj = ±1, L = 1). 1©: Reversible Markov-chain Monte Carlo (see [9,
Fig. 11]) 2©: Method of Section 5.2.1 3©: Method of Section 5.2.2 4©: Method of Section 5.2.3
5©: Method of Section 5.2.4, each with standard errors for π(|r13| < 0.22) and π(|r14| < 0.22).

Coulomb potential associated with the the inverse-power Coulomb bounding
potential. Several event handlers that are instances of the same class realize
these factors, and the number of event handlers must scale with their number.
No internal state is declared. Pair factors are implemented for each pair of point
masses that interact with a harmonic or a repulsive potential. One of the four
point masses is active at each time, and it moves either in +x, in +y, or in
+z direction. The configuration file represents composite point objects as trees
with two levels (see Section 1.2). Positions and velocities are kept consistent
on both levels, although the root-unit properties are not made use of. The tree
structure only serves to identify leaf units on the same dipole.

In the configuration file, taggers and tags are listed in the [TagActivator]
section. The coulomb, harmonic, and repulsive taggers are separate instances
of the same FactorTypeMapInStateTagger class, and the corresponding sec-
tions set up the corresponding event handlers. Both the harmonic and the
repulsive event handlers are instances of the TwoLeafUnitEventHandler class.
Aliasing nevertheless assures a tree-structured configuration file (the harmonic
tagger is for example declared with a HarmonicEventHandler class which is an
alias for the TwoLeafUnitEventHandler class). The coulomb tagger and its
event handlers are treated as in Section 5.1.1.

The sampling, start-of-run, end-of-run and end-of-chain pseudo-factors are
realized by event handlers that are set up in the same way as in all other
configuration files. However, the parent sections differ: the parent of the
[InitialChainStartOfRunEventHandler] section sets the start of run tag-
ger, which specifies that after the start of run event, new coulomb, harmonic,
repulsive, sampling end of chain, and end of run event handlers must be
activated. The tag lists thus differ from those of the [StartOfRun] section
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in other configuration files. The configuration file dipoles/atom factors.ini
reproduces published data (see Fig. 15, 2©).

5.2.2. Molecular Coulomb factors, cell-based bounding potential

The configuration file dipoles/cell bounded.ini implements for each pair
of dipoles a Coulomb four-body factor. (The sum of the merged-image Coulomb
potentials for pairs 1− 3, 1− 4, 2− 3, 2− 4 in Fig. 15 constitutes the Coulomb
factor potential.) The event rates for such factors decay much faster with dis-
tance than for Coulomb pair factors, and the chosen lifting scheme considerably
influences the dynamics (see [9, Sect. IV]). The configuration file installs a cell-
occupancy internal state on the dipole level (rather than for the point masses).
A cell-bounded event handler then realizes a Coulomb four-body factor with its
factor potential associated with an orientation-independent cell-based bounding
potential for dipole pairs that are not in excluded cells relative to each other.
The configuration file furthermore implements pair factors for the harmonic and
the repulsive interactions. One of the four point masses is active at each time,
and it moves either in +x, in +y, or in +z direction.

The configuration file’s [TagActivator] section defines all taggers and their
corresponding tags. Among the taggers for event handlers realizing the Coulomb
four-body factor, the coulomb cell bounding tagger differs markedly from the
set-up in Section 5.1.2, as the event handler10 is for a pair of composite point ob-
jects. The lifting scheme is set to inside first lifting. The bounding poten-
tial is defined in the [CellBoundingPotential] section. A dipole Monte Carlo
estimator is used for simplicity (see Section 4.6). As it obtains an upper bound
for the event rate from random trials for each relative cell orientations, its use is
restricted to there being only a small number of cells. The coulomb nearby and
coulomb surplus taggers are for event handlers realizing the Coulomb four-
body factor when the bounding potential cannot be used. In this case, the
merged-image Coulomb potential is summed for the factor potential, but also for
the bounding potential.11 The standard sampling, end of chain, end of run,
start of run taggers as well as the ones responsible for the harmonic and re-
pulsive potentials are set up in a similar way as in Section 5.2.1.

The [TagActivator] section defines the internal state that is used by the
coulomb cell bounding, coulomb nearby, and coulomb surplus taggers. The
[SingleActiveCellOccupancy] section specifies the cell level (cell level = 1
indicates that the particle identifiers have length one, corresponding to root
nodes, rather than length two, which would correspond to the dipoles’ leaf
nodes). Positions and velocities must thus be kept consistent on both lev-
els. The cell-occupancy system requires the presence of a cell boundary event
handler, again on the level of the root nodes. This event handler is aware of

10set in the [TwoCompositeObjectCellBoundingPotentialEventHandler] section
11The tree structure of the configuration file is hidden in this case, as the JF factory (which

builds instances of classes based on its content) creates separate instances for all the descen-
dants of a section, not requiring the use of aliases.
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the cell level, and it ensures consistency of the events triggered by the cell-
based bounding potential with the underlying cell system. The configuration
file dipoles/cell bounded.ini reproduces published data (see Fig. 15, 3©).

5.2.3. Molecular Coulomb factors, cell-veto

The configuration file dipoles/cell veto.ini implements the same fac-
tors and pseudo-factors and the same internal state as the configuration file of
Section 5.2.2. A single cell-veto event handler then realizes the set of factors
that relate to cells that are not excluded for any number of cell-based particles,
whereas in the earlier implementation, the number of cell-bounded event han-
dlers must exceed the possible number of particles in non-excluded cells of the
active cell. This is what allows to implement ECMC with a complexity of O(1)
per event.

The configuration file resembles that of Section 5.2.2. It mainly replaces the
latter file’s coulomb cell bounding event handlers with a coulomb cell veto
event handler. Slight differences reflect the fact that a cell-veto event han-
dler uses no displacement method of the bounding potential but obtains the
displacement from the total event rate (see the discussion in Section 3.1.3).
The configuration file dipoles/cell veto.ini reproduces published data (see
Fig. 15, 4©).

5.2.4. Atomic Coulomb factors, alternating root mode and leaf mode

The configuration file dipoles/dipole motion.ini implements two differ-
ent modes. In leaf mode, at each time one of the four point masses is active,
and it moves either in +x, in +y, or in +z direction (see Fig. 16a). In root
mode, at each time the point masses of one dipole moves as a rigid block, in
the same direction (see Fig. 16b). (The root mode, by itself, does not assure
irreducibility of the Markov-chain algorithm, as the orientation and shape of
any dipole molecule would remain unchanged throughout the run.)

JF-V1.0 represents the dipoles as trees, and both modes are easily imple-
mented. In leaf mode, the Coulomb factors are realized by coulomb leaf event
handlers that are instances of the same class12 as the coulomb nearby event
handlers in Sections 5.2.2 and 5.2.3. The root mode, in turn, is patterned af-
ter the simulation of two point masses (as in Section 5.1.1): all inner-dipole
potentials are constant. The inter-dipole Coulomb potentials sum up to an ef-
fective two-body potential, the factor potential of a two-body factor realized in
a Coulomb-dipole event handler. The repulsive short-range potential between
oppositely charged atoms in different dipoles also translates into a potential be-
tween the dipoles in rigid motion, and serves as a factor potential of a two-body
factor, realized in a specific event handler.

Taggers and their tags are listed in the [TagActivator] section. The
harmonic leaf, repulsive leaf (leaf-mode) taggers, as well as all those re-
lated to event handlers that realize pseudo-factors are as in Section 5.2.1. The

12Instances of the TwoCompositeObjectSummedBoundingPotentialEventHandler class
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coulomb leaf tagger corresponds to the coulomb nearby tagger in Section 5.2.2.
The coulomb root and repulsive root taggers are analogous to those in Sec-
tion 5.1.1 for the two-atom case.

As all other operations that take place in JF, the switches between leaf mode
and root mode are also formulated as events. They are related to two pseudo-
factors and realized by a leaf to root event handler and by a root to leaf
event handler, respectively. (These two event handlers are aliases for instances of
the RootLeafUnitActiveSwitcher class.) The root to leaf and leaf to root
taggers, in addition to the create and trash lists, set up separate activate
and deactivate lists (see Section 2.4). The configuration file reproduces pub-
lished data (see Fig. 15, 5©). Of particular interest is that the tree representation
of composite point objects keeps consistency between leaf-node units and root-
node units: the event handlers return branches of cnodes for all independent
units (see Fig. 7) whose unit information can be integrated into the global state.

Figure 16: Two moves implemented in dipoles/dipole motion.ini. (a): In leaf mode, a
single independent active leaf unit has velocity v. The corresponding dipole center (the active
root unit) is induced to move at v/2. (b): In root mode, one dipole (independent active root
unit) has velocity v, and both its active leaf units have induced velocity v.

5.3. Interacting water molecules (SPC/Fw model)

The configuration files in the water directory implement the ECMC sam-
pling of the Boltzmann distribution for two water molecules, using the SPC/Fw
model that was previously studied with ECMC [9]. Molecules are represented
as composite point objects with three charged point masses, one of which is
positively charged (representing the oxygen) and the two others are negatively
charged (representing the hydrogens). Point masses in different water molecules
interact via the merged-image Coulomb potential. In addition, point masses
within each molecule interact with a three-body bending interaction, and a har-
monic oxygen–hydrogen potential. Finally, any two oxygens interact through a
Lennard-Jones potential [9].

In the tree state handler (defined in the [TreeStateHandler] section, a
child of the [SingleProcessMediator] section), water molecules are repre-
sented as trees with a root node and three children (the leaf nodes of the
tree). The total number of water molecules (that is, of root nodes) is set in the
[RandomInputHandler] section of each configuration file. The molecules are
created through the fill root node method in the WaterRandomNodeCreator
class. There are two node levels (number of node levels = 2) and three

38



nodes per root node (number of nodes per root node = 3). The charges of
a molecule are set in the [ElectricChargeValues] section (a descendant of
the [WaterRandomNodeCreator] section).

All the configuration files in the water directory of JF-V1.0 implement the
pair harmonic factors that are realized through harmonic event handlers. The
corresponding taggers are defined in the [Harmonic] sections, with the displaced
even-power potential and its parameters set in the [HarmonicEventHandler]
and [HarmonicPotential] sections. The configuration files furthermore im-
plement the taggers corresponding to the three-body bending factors in their
[Bending] sections. The bending event handler has three independent units
(attached to branches). It thus requires a lifting scheme (which is chosen in the
[BendingEventHandler] section), which is however unique (see [9, Fig. 2]). In
all these configuration files, one of the six point masses is active, and it moves
either in +x, in +y, or in +z direction (the optional rigid displacement of the
entire water molecule, could be set up as in Section 5.2.4).

Statistically equivalent output is obtained for a simple set-up featuring pair
factors for the Coulomb potential and a Lennard-Jones interaction that is in-
verted (Section 5.3.1), or for a molecular-factor Coulomb potential associated
with a power-law bounding potential and a cell-based Lennard-Jones bounding
potential (Section 5.3.2). In addition, the cell-veto algorithm for the Coulomb
potential coupled to an inverted Lennard-Jones potential (Section 5.3.3) is also
provided. Finally, cell-veto event handlers take part in the realization of complex
molecular Coulomb factors and also realize Lennard-Jones factors between oxy-
gens (Section 5.3.4). This illustrates how multiple independent cell-occupancy
systems may coexist within the same run.

Figure 17: Cumulative histogram of the oxygen–oxygen pair separation |rOO| for two SPC/Fw
water molecules in a periodic cubic simulation box. 1©: Reversible Markov-chain Monte Carlo
(see [9, Fig. 14]) 2©: Method of Section 5.3.1 3©: Method of Section 5.3.2 4©: Method of
Section 5.3.3 5©: Method of Section 5.3.4, each with standard errors for π(|rOO| < 2.9).

5.3.1. Atomic Coulomb factors, Lennard-Jones inverted

The configuration file water/coulomb power bounded lj inverted.ini im-
plements pair Lennard-Jones, harmonic and Coulomb factors. The Coulomb
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factors are realized for any distance of the point masses by event handlers that
associate the merged-image Coulomb potential with its inverse-power Coulomb
bounding potential. The Lennard-Jones potential is inverted. This configura-
tion file needs no internal state.

In the configuration file, the [TagActivator] section lists all the taggers to-
gether with their tags, which in addition to the taggers related to pseudo-factors,
are reduced to coulomb, harmonic, bending, and lennard jones. The merged-
image Coulomb potential with its associated power-law bounding potential
(both for attractive and repulsive charge products) is specified in the [Coulomb]
section of the configuration file. The Lennard-Jones potential is invertible and
its displacement method is used rather than that of a bounding potential. The
output handler is defined in the [OxygenOxygenSeparationOutputHandler]
section, a child of the [InputOutputHandler] section. It obtains all the units,
extracts the oxygens through their unit identifier, and records the oxygen–
oxygen separation distance. This reproduces published data (see Fig. 17, 2©).

5.3.2. Molecular Coulomb factors, Lennard-Jones cell-bounded

The configuration file water/coulomb power bounded lj cell bounded.ini
for the water system corresponds to pair factors for the Lennard-Jones and the
harmonic potentials and to molecular factors for the Coulomb interaction. The
Coulomb factor potential is the sum of the merged-image Coulomb potential
for the nine relevant pairs of point masses (pairs across two molecules). It is
realized in a particular event handler,13 analogously to how this is done for the
Coulomb interaction in Sections 5.2.2 and 5.2.3. The associated bounding po-
tential (both for attractive and repulsive charge combinations) is given by the
sum over all the individual pairs. Although the Lennard-Jones interaction can
be inverted, the configuration file sets up a cell-occupancy internal state that
tracks the identifiers for the oxygens. As in previous cases, this leads to three
types of events, corresponding to the nearby, surplus, and cell-based particles,
in addition to cell-boundary events.

Taggers and their tags are listed in the [TagActivator] section. Taggers are
generally utilized as in other configuration files. The internal state is specified in
the [TagActivator] section. As set up in the [SingleActiveCellOccupancy]
section, it features a oxygen indicator charge (set in the [OxygenIndicator]
section). The oxygen-indicator charge is non-zero only for the oxygens. In con-
sequence, the oxygen cell system (defined in the [OxygenCell] section) tracks
only oxygens. This reproduces published data (see Fig. 17, 3©). Nevertheless,
this configuration file does not scale up easily with system size.

5.3.3. Molecular Coulomb cell-veto, Lennard-Jones inverted

The configuration file water/coulomb cell veto lj inverted.ini for the
water system corresponds to the same factors as in Section 5.3.2. As a prelimi-
nary step towards the treatment of all long-range interactions with the cell-veto

13an instance of the TwoCompositeObjectSummedBoundingPotentialEventHandler class.
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algorithm, in Section 5.3.4, molecular Coulomb factors are realized here (for
non-excluded cells of the active cell) with a cell-veto event handler.

Taggers and their tags are listed in the [TagActivator] section, and they are
generally similar to those of other configuration files. In addition, the internal
state for the Coulomb system is defined in the [TagActivator] section and
further described in the [SingleActiveCellOccupancy] section. The latter
describes the cell level (which serves for the water molecules) as on the root
node level (cell level = 1), the barycenter of the leaf-node positions of each
water molecule. (Root-node and leaf-node positions are set in the random input
handler, which itself uses a water random node creator.)

The event handlers consistently update all leaf-node positions and root-
node positions from a valid initial configuration obtained in an instance of
the WaterRandomNodeCreator class. Consistency will be deteriorated over long
runs, but this is of little importance for the simple example case presented here.
The configuration file reproduces published data (see Fig. 17, 4©).

5.3.4. Molecular Coulomb cell-veto, Lennard-Jones cell-veto

The configuration file water/coulomb cell veto lj cell veto.ini offers
no new factors compared to Sections 5.3.2 and 5.3.3, but it uses, for illustra-
tion purposes, two cell-occupancy systems and two cell-veto event handlers. As
nearby and surplus particles are excluded from the cell-veto treatment, this im-
plies two sets of cell-based, nearby, and surplus event handlers in addition to two
cell-boundary event handlers. For the molecular Coulomb factors, the cell-veto
event handler receives as a factor potential the sum of pairwise merged-image
Coulomb potentials with attractive and repulsive charge combinations. Cells
track the barycenter of individual water molecules, and consistency between
root-node units and leaf-node units is of importance. Although the Lennard-
Jones potential can be inverted, the configuration file sets up a second cell-
occupancy system for the Lennard-Jones potential. The cell-occupancy system
tracks only leaf-node particles that correspond to oxygen atoms.

Taggers and their tags are listed in the [TagActivator] section. This section
is of interest as it sets up the internal state as two cell-occupancy systems, both
instances of the same SingleActiveCellOccupancy class. They require differ-
ent parameters, and are therefore presented under aliases, in the [OxygenCell]
and [MoleculeCell] sections. Each of theses cell-occupancy systems use a sep-
arate cell system instance of the same class. As the two cell systems have the
same parameters, they do not need to be aliased in the configuration file. The
configuration file reproduces published data (see Fig. 17, 5©).

6. Licence, GitHub repository, Python version

JF, the Python application described in this paper, is an open-source soft-
ware project that grants users the rights to study and execute, modify and
distribute the code. Modifications can be fed back into the project.
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6.1. Licence information, used software

JF is made available under the GNU GPLv3 licence (for details see the JF
LICENCE file). The use of the Python MDAnalysis package [27, 11] for reading
and writing .pdb files, of the Python Dill package [25, 26] for dumping and
restarting a run of the application, and of the Python Matplotlib [15] and
NumPy [31, 38] packages for the graphical analysis of output is acknowledged.

6.2. GitHub repository

JeLLyFysh, the public repository for all the code and the documentation
of the application, is part of a public GitHub organization.14 The repository
can be forked (that is, copied to an outside user’s own public repository) and
from there studied, modified and run in the user’s local environment. Users
may contribute to the JF application via pull requests (see the JF README and
CONTRIBUTING.md files for instructions and guidelines). All communication (bug
reports, suggestions) takes place through GitHub “Issues”, that can be opened
in the repository by any user or contributor, and that are classified in GitHub
projects on JeLLyFysh.

6.3. Python version, coding conventions

JF-V1.0 is compatible with Python 3.5 (and higher) and with PyPy 7 (and
higher), a just-in-time compiling Python alternative to interpreted CPython
(see the JF documentation for details). JF code adheres to the PEP8 style
guide for Python code, except for the linewidth that is set to 120 (see the
CONTRIBUTING.md file for details).

Following the PEP8 Python naming convention, JF modules and packages
are spelled in snake case and classes in camel case (the state handler module
thus contains the StateHandler class). In configuration files, section titles are
in camel case and enclosed in square brackets (see Fig. 13).

Versioning of the JF project adopts two-to-four-field version numbers de-
fined as Milestone.Feature.AddOn.Patch. Version 1.0, as described, represents
the first development milestone which reproduces published data [9]. Patches
and bugfixes of this version will be given number 1.0.0.1, 1.0.0.2, etc. (Finer-
grained distinction between versions is obtained through the hashes of master-
branch GitHub commits.) New configuration files and required extensions are
expected to lead to versions 1.0.1. 1.0.2, etc. Version 1.1 is expected to fully
implement different dimensions and arbitrary rectangular and cuboid shapes
of the JF potential package. Versions 1.2 and 1.3 will consistently imple-
ment nac > 1 independent active particles (on a single processor) and eliminate
unnecessary time-slicing for some events triggered by pseudo-factors and for un-
confirmed events. All development from Versions 1.0 to 2.0 can be undertaken
concurrently. Fully parallel code is planned for Version 3.0. In JF development,
two-field versions (2.0, 3.0, etc) may introduce incompatible code, while three-
and four-field version numbers are intended to be backward compatible.

14The organization’s url is https://github.com/jellyfysh
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7. Conclusions, outlook

As presented in this paper, JF is a computer application for ECMC sim-
ulations that is hoped to become useful for researchers in different fields of
computational science. The JF-V1.0 constitutes its first development mile-
stone: built on the mediator design pattern, it systematically formulates the
entire ECMC time evolution in terms of events, from the start-of-run to the
end-of-run, including sampling, restarts (that is, end-of-chain), and the factor
events. A number of configuration files validate JF-V1.0 against published test
cases for long-range interacting systems [9].

For JF-V1.0, consistency has been the main concern, and code has not yet
been optimized. Also, the handling of exceptions remains rudimentary, although
this is not a problem for the cookbook examples of Section 5.

All the methods are written in Python. Considerable speed-up can certainly
be obtained by rewriting time-consuming parts of the application in compiled
languages, in particular of the potential package. One of the principal limita-
tions of JF-V1.0 is that pseudo-factor-related and unconfirmed events are time-
sliced, leading to superfluous trashing and re-activation of candidate events.
Optimized bounding potentials for many-particle factor potentials appear also
as a priority.

The consistent implementation of an arbitrary number nac of simultaneously
active particles is straightforward, although it has also not been implemented
fully in JF-V1.0. (As mentioned, this is planned for JF (Version 2.0)). This
will enable full parallel implementations on multiprocessor machines. Simplified
parallel implementations for one-dimensional systems and for hard-disk models
in two dimensions are currently being prototyped. The parallel computation of
candidate events (using the MultiProcessMediator class implemented in JF-
V1.0) is at present rather slow. Bringing the full power of parallelization and
of multi-process ECMC to real-world applications appears as its outstanding
challenge for JF.
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Domański, J., Dotson, D., Buchoux, S., Kenney, I., Beckstein, O., 2016.
MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dy-
namics Simulations, in: Proceedings of the 15th Python in Science Confer-
ence, SciPy. URL: https://doi.org/10.25080/majora-629e541a-00e,
doi:10.25080/majora-629e541a-00e.

[12] Harland, J., Michel, M., Kampmann, T.A., Kierfeld, J., 2017. Event-
chain Monte Carlo algorithms for three- and many-particle interactions.
EPL (Europhysics Letters) 117, 30001. URL: http://stacks.iop.org/
0295-5075/117/i=3/a=30001.

44



[13] Hasenbusch, M., Schaefer, S., 2018. Testing the event-chain
algorithm in asymptotically free models. Phys. Rev. D 98,
054502. URL: https://link.aps.org/doi/10.1103/PhysRevD.98.

054502, doi:10.1103/PhysRevD.98.054502.

[14] Herbordt, M.C., Khan, M.A., Dean, T., 2009. Parallel Discrete Event Sim-
ulation of Molecular Dynamics Through Event-Based Decomposition, in:
2009 20th IEEE International Conference on Application-specific Systems,
Architectures and Processors, IEEE. URL: https://doi.org/10.1109/
asap.2009.39, doi:10.1109/asap.2009.39.

[15] Hunter, J.D., 2007. Matplotlib: A 2D Graphics Environment. Computing
in Science & Engineering 9, 90–95. URL: https://doi.org/10.1109/

mcse.2007.55, doi:10.1109/mcse.2007.55.

[16] Kapfer, S.C., Krauth, W., 2013. Sampling from a polytope and hard-
disk Monte Carlo. Journal of Physics: Conference Series 454, 012031.
URL: http://stacks.iop.org/1742-6596/454/i=1/a=012031, doi:10.
1088/1742-6596/454/1/012031.

[17] Kapfer, S.C., Krauth, W., 2015. Two-Dimensional Melting: From Liquid-
Hexatic Coexistence to Continuous Transitions. Phys. Rev. Lett. 114,
035702. URL: http://link.aps.org/doi/10.1103/PhysRevLett.114.

035702, doi:10.1103/PhysRevLett.114.035702.

[18] Kapfer, S.C., Krauth, W., 2016. Cell-veto Monte Carlo algorithm for long-
range systems. Phys. Rev. E 94, 031302. URL: http://link.aps.org/
doi/10.1103/PhysRevE.94.031302, doi:10.1103/PhysRevE.94.031302.

[19] Kapfer, S.C., Krauth, W., 2017. Irreversible Local Markov Chains
with Rapid Convergence towards Equilibrium. Phys. Rev. Lett. 119,
240603. URL: https://link.aps.org/doi/10.1103/PhysRevLett.119.
240603, doi:10.1103/PhysRevLett.119.240603.

[20] Khan, M.A., Herbordt, M.C., 2011. Parallel discrete molecular dynamics
simulation with speculation and in-order commitment. Journal of Compu-
tational Physics 230, 6563 – 6582. URL: http://www.sciencedirect.

com/science/article/pii/S0021999111002968, doi:https://doi.org/
10.1016/j.jcp.2011.05.001.

[21] de Leeuw, S.W., Perram, J.W., Smith, E.R., 1980. Simulation
of electrostatic systems in periodic boundary conditions. II. Equiv-
alence of boundary conditions. Proc. R. Soc. A 373, 57–66.
URL: http://rspa.royalsocietypublishing.org/content/373/1752/

57, doi:10.1098/rspa.1980.0136.

[22] Lei, Z., Krauth, W., 2018a. Irreversible Markov chains in spin models:
Topological excitations. EPL 121, 10008.

45



[23] Lei, Z., Krauth, W., 2018b. Mixing and perfect sampling in one-dimensional
particle systems. EPL 124, 20003. URL: http://stacks.iop.org/

0295-5075/124/i=2/a=20003.

[24] Lei, Z., Krauth, W., Maggs, A.C., 2019. Event-chain Monte Carlo with
factor fields. Physical Review E 99. URL: https://doi.org/10.1103/
physreve.99.043301, doi:10.1103/physreve.99.043301.

[25] McKerns, M.M., Aivazis, M.A., 2010. Pathos: a framework for het-
erogeneous computing. URL: http://trac.mystic.cacr.caltech.edu/
project/pathos.

[26] McKerns, M.M., Strand, L., Sullivan, T., Fang, A., Aivazis, M.A., 2011.
Building a Framework for Predictive Science , in: van der Walt, S., Mill-
man, J. (Eds.), Proceedings of the 10th Python in Science Conference, pp.
67 – 78.

[27] Michaud-Agrawal, N., Denning, E.J., Woolf, T.B., Beckstein, O., 2011.
MDAnalysis: A toolkit for the analysis of molecular dynamics simulations.
Journal of Computational Chemistry 32, 2319–2327. URL: https://doi.
org/10.1002/jcc.21787, doi:10.1002/jcc.21787.

[28] Michel, M., Kapfer, S.C., Krauth, W., 2014. Generalized event-chain
Monte Carlo: Constructing rejection-free global-balance algorithms from
infinitesimal steps. J. Chem. Phys. 140, 054116. doi:10.1063/1.4863991,
arXiv:1309.7748.

[29] Miller, S., Luding, S., 2003. Event-driven molecular dynamics in parallel.
Journal of Computational Physics 193, 306–316. URL: https://doi.org/
10.1016/j.jcp.2003.08.009, doi:10.1016/j.jcp.2003.08.009.

[30] Nishikawa, Y., Michel, M., Krauth, W., Hukushima, K., 2015. Event-
chain algorithm for the Heisenberg model: Evidence for z sim 1 dynamic
scaling. Phys. Rev. E 92, 063306. doi:10.1103/PhysRevE.92.063306,
arXiv:1508.05661.

[31] Oliphant, T.E., 2006. A guide to NumPy. Trelgol Publishing USA.

[32] Peters, E.A.J.F., de With, G., 2012. Rejection-free Monte
Carlo sampling for general potentials. Phys. Rev. E 85, 026703.
URL: http://link.aps.org/doi/10.1103/PhysRevE.85.026703,
doi:10.1103/PhysRevE.85.026703.

[33] Proctor, E.A., Ding, F., Dokholyan, N.V., 2011. Discrete molec-
ular dynamics. Wiley Interdisciplinary Reviews: Computational
Molecular Science 1, 80–92. URL: https://onlinelibrary.

wiley.com/doi/abs/10.1002/wcms.4, doi:10.1002/wcms.4,
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.4.

46



[34] Proctor, E.A., Dokholyan, N.V., 2016. Applications of Discrete
Molecular Dynamics in biology and medicine. Current Opinion in
Structural Biology 37, 9 – 13. URL: http://www.sciencedirect.

com/science/article/pii/S0959440X15001578, doi:https://doi.org/
10.1016/j.sbi.2015.11.001. theory and simulation - Macromolcular ma-
chines.
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