The one-dimensional Hubbard Model and Exact Diagonalization

(Due date: 3rd of February 2014)

The one-dimensional Hubbard model is given by

\[
H = -t \sum_{i,\sigma} \left(c_{i,\sigma}^\dagger c_{i+1,\sigma} + c_{i+1,\sigma}^\dagger c_{i,\sigma} \right) + \frac{U}{2} \sum_{i,\sigma} n_{i,\sigma} n_{i,-\sigma},
\]

(1)

where \(c_{i,\sigma}^\dagger \) and \(c_{i,\sigma} \) are the creation and annihilation operators for an electron at site \(i \) with spin \(\sigma \) and \(n_{i,\sigma} = c_{i,\sigma}^\dagger c_{i,\sigma} \) is the corresponding occupation number operator. The first term in equation (1) is a kinetic hopping term which allows energy gain by delocalizing the electrons into itinerant states. These hopping processes have amplitude \(t \). The second term describes the on-site Coulomb repulsion \(U \) between electrons sharing the same orbital.

To study the model we consider the occupation number representation which includes states describing all possible distributions of \(N \) electrons over the \(L \) lattice sites of a chain of ions. In particular, we label these sites with the following convention

\[
\begin{array}{cccc}
\square & \square & \cdots & \square \\
L-1 & 2 & 1 & 0
\end{array}
\]

(2)

We can represent the up- and down-spin configurations in the computer separately by assigning to each lattice site a 1 if the site is occupied or a zero if it is not. For example, a state that has five electrons on an eight-site chain with three up spins and two down spins is represented in this notation as

\[
|00101010\rangle_\uparrow |00100100\rangle_\downarrow.
\]

(3)

The up-spin electrons are at sites 1, 3 and 5 while the down-spin electrons are at sites 2 and 5. The remaining sites are unoccupied.
ASSIGNMENT: (40 points)

1.- Find the ground-state energy of the Hubbard model on rings (chains with periodic boundary conditions) with 4, 6, 8, 10, 12 and 14 sites at half-filling, i.e. when the number of sites equals the number of electrons and there is the same number of up-spin and down-spin electrons in the system. Compare your results with the exact solution which is given by

\[E_0(U) = -4L \int_{0}^{\infty} \frac{J_0(\omega)J_1(\omega)}{\omega \left(1 + \exp(\omega U/2)\right)} d\omega, \]

where \(J_n(\omega) \) is the Bessel function of the first kind (of order \(n \)) and \(L \) is the number of sites on the ring. The hopping amplitude is set to one.

2.- Calculate the ground-state expectation value of the operators \(n_{i,\uparrow} \pm n_{i,\downarrow} \) for different values of the interaction \(U \).

DISCUSSION: (10 points)
On the 4th of February you are expected to give a short (15min) presentation where you will:

- Introduce the problem you worked on.
- Give technical details about the numerical problem and how you dealt with it.
- Present your final results.
- Answer the questions of the audience.